Servicio de Terapia Intensiva de Adultos, Hospital Italiano de Buenos Aires, Argentina.
Instituto de Medicina Traslacional e Ingeniería Biomédica, Hospital Italiano de Buenos Aires, Instituto Universitario del Hospital Italiano de Buenos Aires, CONICET, Perón 4190 - (C1199ABB) Ciudad Autónoma de Buenos Aires, Argentina.
J Neurosci Methods. 2022 May 1;373:109561. doi: 10.1016/j.jneumeth.2022.109561. Epub 2022 Mar 14.
Intracranial hypertension (HI) is associated with worse neurological outcomes and higher mortality. Although there are several experimental models of HI, in this article we present a reproducible, reversible, and reliable model of intracranial hypertension, with continuous multimodal monitoring.
A reversible intracranial hypertension model in swine with multimodal monitoring including intracranial pressure, arterial blood pressure, heart rate variation, brain tissue oxygenation, and electroencephalogram is developed to understand the relationship of ICP and EEG. By inflating and deflating a balloon, located 20 mm anterior to the coronal suture and a 15 mm sagittal suture, we generate intracranial hypertension events and simultaneously measure intracranial pressure and oxygenation in the contralateral hemisphere and the EEG, simulating the usual configuration in humans.
We completed 5 experiments and in all of them, we were able to complete at least 6 events of intracranial hypertension in a stable and safe way. For events of 20-40 mmHg of ICP we need an median (IQR) of 4.2 (3.64) ml of saline solution into the Foley balloon, a median (IQR) infusion time of 226 (185) second in each event and for events of 40-50 mmHg of ICP we need a median (IQR) of 5.1 (4.66) ml of saline solution, a median (IQR) infusion time of 280 (48) seconds and a median (IQR). The median (IQR) maintenance time was 352 (77) seconds and 392 (166) seconds for 20-40 mmHg and 40-50 mmHg of ICP, respectively.
COMPARISON WITH EXISTING METHOD(S): Existing methods do not include EEG measures and do not present the reversibility of intracranial hypertension.
Our model is fully reproducible, it is capable of generating reversible focal intracranial hypertension through strict control of the injected volume, it is possible to generate different infusion rates of the volume in the balloon, in order to generate different scenarios, the data obtained are sufficient to determine the brain complacency in real time. and useful for understanding the pathophysiology of ICP and the relationship between ICP (CPP) and EEG.
颅内高压(HI)与更差的神经预后和更高的死亡率相关。尽管有几种 HI 的实验模型,但在本文中,我们提出了一种可重复、可逆和可靠的颅内高压模型,具有连续的多模态监测。
通过向位于冠状缝前 20mm 和矢状缝 15mm 的球囊充气和放气,我们开发了一种具有多模态监测的猪可逆性颅内高压模型,包括颅内压、动脉血压、心率变异、脑组织氧合和脑电图,以了解 ICP 和 EEG 之间的关系。我们生成颅内高压事件,并同时测量对侧半球的颅内压和氧合以及 EEG,模拟人类的常见配置。
我们完成了 5 项实验,在所有实验中,我们都能够以稳定和安全的方式完成至少 6 次颅内高压事件。对于 20-40mmHg 的 ICP 事件,我们需要向 Foley 球囊中注入中位数(IQR)为 4.2(3.64)ml 的生理盐水,每个事件的中位数(IQR)输注时间为 226(185)秒,对于 40-50mmHg 的 ICP 事件,我们需要中位数(IQR)为 5.1(4.66)ml 的生理盐水,中位数(IQR)输注时间为 280(48)秒和中位数(IQR)。维持时间的中位数(IQR)分别为 352(77)秒和 392(166)秒,用于 20-40mmHg 和 40-50mmHg 的 ICP。
现有的方法不包括脑电图测量,也不呈现颅内高压的可逆性。
我们的模型是完全可重复的,它能够通过严格控制注入的体积生成可逆转的局灶性颅内高压,它可以生成不同的球囊内体积输注率,以便生成不同的情况,所获得的数据足以实时确定大脑顺应性,并有助于理解 ICP 的病理生理学以及 ICP(CPP)和 EEG 之间的关系。