Gkikas Stefanos, Tachos Nikolaos S, Andreadis Stelios, Pezoulas Vasileios C, Zaridis Dimitrios, Gkois George, Matonaki Anastasia, Stavropoulos Thanos G, Fotiadis Dimitrios I
Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.
Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Heraklion, Greece.
Front Pain Res (Lausanne). 2024 Mar 27;5:1372814. doi: 10.3389/fpain.2024.1372814. eCollection 2024.
Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the , responsible for extracting embeddings from videos; the , tasked with mapping heart rate signals into a higher dimensional space; the , designed to create learning-based augmentations in the latent space; and the , which utilizes the extracted video and heart rate embeddings for the final assessment. The undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing million parameters for the entire framework.
准确而客观的疼痛评估对于制定有效的疼痛管理方案至关重要,旨在减轻痛苦并防止患者功能下降。本研究介绍了一种利用视频和心率信号进行急性疼痛的多模态自动评估框架。所提出的框架包括四个关键模块:负责从视频中提取嵌入特征的模块;负责将心率信号映射到更高维空间的模块;旨在在潜在空间中创建基于学习的增强的模块;以及利用提取的视频和心率嵌入特征进行最终评估的模块。该模块采用两阶段策略进行预训练:首先,以人脸识别目标学习通用面部特征,其次,在多任务学习方法中以情感识别目标进行预训练,从而能够提取用于自动疼痛评估的高质量嵌入特征。使用从数据库心电图中提取的面部视频和心率进行的实验,以及与29项研究的直接比较,证明了在单模态和多模态设置下的先进性能,并保持了高效率。在多模态环境中,利用整个框架的百万个参数,二元和多级疼痛分类任务的准确率分别达到了82.74%和39.77%。