Suppr超能文献

基于伪标签的疼痛领域分类器适应性调整。

Pseudo-labeling based adaptations of pain domain classifiers.

作者信息

Ricken Tobias B, Gruss Sascha, Walter Steffen, Schwenker Friedhelm

机构信息

Institute of Neural Information Processing, Ulm University, Ulm, Germany.

Medical Psychology Group, University Clinic, Ulm, Germany.

出版信息

Front Pain Res (Lausanne). 2025 Apr 23;6:1562099. doi: 10.3389/fpain.2025.1562099. eCollection 2025.

Abstract

INTRODUCTION

Each human being experiences pain differently. In addition to the highly subjective phenomenon, only limited labeled data, mostly based on short-term pain sequences recorded in a lab setting, is available. However, human beings in a clinic might suffer from long painful time periods for which even a smaller amount of data, in comparison to the short-term pain sequences, is available. The characteristics of short-term and long-term pain sequences are different with respect to the reactions of the human body. However, for an accurate pain assessment, representative data is necessary. Although pain recognition techniques, reported in the literature, perform well on short-term pain sequences. The collection of labeled long-term pain sequences is challenging and techniques for the assessment of long-term pain episodes are still rare. To create accurate pain assessment systems for the long-term pain domain a knowledge transfer from the short-term pain domain is inevitable.

METHODS

In this study, we adapt classifiers for the short-term pain domain to the long-term pain domain using pseudo-labeling techniques. We analyze the short-term and long-term pain recordings of physiological signals in combination with electric and thermal pain stimulation.

RESULTS AND CONCLUSIONS

The results of the study show that it is beneficial to augment the training set with the pseudo labeled long-term domain samples. For the electric pain domain in combination with the early fusion approach, we improved the classification performance by 2.4% to 80.4% in comparison to the basic approach. For the thermal pain domain in combination with the early fusion approach, we improved the classification performance by 2.8% to 70.0% in comparison to the basic approach.

摘要

引言

每个人对疼痛的体验都不同。除了这种高度主观的现象外,现有的标注数据非常有限,且大多基于在实验室环境中记录的短期疼痛序列。然而,临床中的患者可能会经历长时间的疼痛,与短期疼痛序列相比,这类情况下可用的数据量更少。短期和长期疼痛序列在人体反应方面具有不同的特征。然而,为了进行准确的疼痛评估,需要有代表性的数据。尽管文献中报道的疼痛识别技术在短期疼痛序列上表现良好,但标注的长期疼痛序列的收集具有挑战性,评估长期疼痛发作的技术仍然很少。为了创建针对长期疼痛领域的准确疼痛评估系统,从短期疼痛领域进行知识转移是不可避免的。

方法

在本研究中,我们使用伪标签技术将短期疼痛领域的分类器应用于长期疼痛领域。我们结合电刺激和热刺激疼痛分析生理信号的短期和长期疼痛记录。

结果与结论

研究结果表明,用伪标注的长期领域样本扩充训练集是有益的。对于电刺激疼痛领域结合早期融合方法,与基本方法相比,我们将分类性能提高了2.4%,达到80.4%。对于热刺激疼痛领域结合早期融合方法,与基本方法相比,我们将分类性能提高了2.8%,达到70.0%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3a2/12055815/6b58ad0716dd/fpain-06-1562099-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验