Suppr超能文献

基于人群的横断面研究中,对 CT 和双能 X 射线吸收法体成分参数进行协方差分析,使脂肪组织测量标准化。

Computed Tomography and Dual-Energy X-Ray Asorptiometry body composition parameter harmonisation to universalise adipose tissue measurements in a population-based cross-sectional study.

机构信息

Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA.

Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.

出版信息

Clin Obes. 2024 Aug;14(4):e12660. doi: 10.1111/cob.12660. Epub 2024 Apr 11.

Abstract

To harmonise computed tomography (CT) and dual-energy x-ray absorptiometry (DXA) body composition measurements allowing easy conversion in longitudinal assessments and across cohorts to assess cardiometabolic risk and disease. Retrospective cross-sectional observational study from 1996 to 2008 included participants in the Pennington Center Longitudinal Study (PCLS) (N = 1967; 571 African American/1396 White). Anthropometrics, whole-body DXA and abdominal CT images were obtained. Multi-layer segmentation techniques (Analyze; Rochester, MN) quantified visceral adipose tissue (VAT). Clinical biomarkers were obtained from routine blood samples. Linear models were used to predict CT-VAT from DXA-VAT and examine the effects of traditional biomarkers on cross-sectional-VAT. Predicted CT-VAT was highly associated with measured CT-VAT using ordinary least square linear regression analysis and random forest models (R = 0.84; 0.94, respectively, p < .0001). Model stratification effects showed low variability between races and sexes. Overall, associations between measured CT-VAT and DXA-predicted CT-VAT were good (R > 0.7) or excellent (R > 0.8) and improved for all stratification groups except African American men using random forest models. The clinical effects on measured CT-VAT and DXA-VAT showed no significant clinical difference in the measured adipose tissue areas (mean difference = 0.22 cm). Random forest modelling seamlessly predicts CT-VAT from measured DXA-VAT to a degree of accuracy that falls within the bounds of universally accepted standard error.

摘要

为了协调计算机断层扫描(CT)和双能 X 射线吸收法(DXA)的身体成分测量,以便在纵向评估和跨队列中进行方便的转换,以评估心血管代谢风险和疾病。本研究为 1996 年至 2008 年的回顾性横断面观察性研究,纳入了彭宁顿中心纵向研究(PCLS)的参与者(N=1967;571 名非裔美国人/1396 名白人)。测量了人体测量学、全身 DXA 和腹部 CT 图像。采用多层分割技术(Analyze;Rochester,MN)对内脏脂肪组织(VAT)进行定量分析。从常规血液样本中获得临床生物标志物。线性模型用于预测 DXA-VAT 中的 CT-VAT,并检查传统生物标志物对横断面-VAT 的影响。使用普通最小二乘线性回归分析和随机森林模型(R=0.84;0.94,分别,p<0.0001),预测 CT-VAT 与实测 CT-VAT 高度相关。模型分层效果表明,种族和性别之间的变异性较低。总体而言,实测 CT-VAT 与 DXA 预测 CT-VAT 之间的相关性良好(R>0.7)或极好(R>0.8),除了使用随机森林模型的非裔美国男性外,所有分层组的相关性都有所提高。实测 CT-VAT 和 DXA-VAT 的临床影响表明,实测脂肪组织面积的临床差异不显著(平均差异=0.22cm)。随机森林模型可以无缝地根据实测 DXA-VAT 预测 CT-VAT,其准确性在普遍接受的标准误差范围内。

相似文献

8
Visceral adiposity and inflammatory bowel disease.内脏肥胖与炎症性肠病。
Int J Colorectal Dis. 2021 Nov;36(11):2305-2319. doi: 10.1007/s00384-021-03968-w. Epub 2021 Jun 9.

本文引用的文献

2
Dual-energy X-ray absorptiometry for quantification of visceral fat.双能 X 射线吸收法定量检测内脏脂肪。
Obesity (Silver Spring). 2012 Jun;20(6):1313-8. doi: 10.1038/oby.2011.393. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验