Jacobi Richard, González Leticia
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
Phys Chem Chem Phys. 2024 Apr 24;26(16):12299-12305. doi: 10.1039/d4cp00420e.
Energy transfer between orthogonally arranged chromophores is typically considered impossible according to conventional Förster resonance energy transfer theory. Nevertheless, the disruption of orthogonality by nuclear vibrations can enable energy transfer, what has prompted the necessity for formal expansions of the standard theory. Here, we propose that there is no need to extend conventional Förster theory in such cases. Instead, a more accurate representation of the chromophores is required. Through calculations of the energy transfer rate using structures from a thermal ensemble, rather than relying on equilibrium geometries, we show that the standard Förster resonance energy transfer theory is still capable of describing energy transfer in orthogonally arranged systems. Our calculations explain how thermal vibrations influence the electronic properties of the states involved in energy transfer, affecting the alignment of transition dipole moments and the intensity of transitions.
根据传统的福斯特共振能量转移理论,通常认为正交排列的发色团之间的能量转移是不可能的。然而,核振动对正交性的破坏能够实现能量转移,这促使了对标准理论进行形式扩展的必要性。在此,我们提出在这种情况下无需扩展传统的福斯特理论。相反,需要对发色团进行更精确的描述。通过使用热系综中的结构计算能量转移速率,而不是依赖于平衡几何结构,我们表明标准的福斯特共振能量转移理论仍然能够描述正交排列系统中的能量转移。我们的计算解释了热振动如何影响能量转移所涉及状态的电子性质,影响跃迁偶极矩的取向和跃迁强度。