Suppr超能文献

分子支化和表面润湿性对液态烷烃表面纳米液滴的固液表面张力和线张力的影响。

Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.

作者信息

Jabbarzadeh Ahmad

机构信息

School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.

出版信息

J Colloid Interface Sci. 2024 Jul 15;666:355-370. doi: 10.1016/j.jcis.2024.04.021. Epub 2024 Apr 6.

Abstract

HYPOTHESIS

Surface nanodroplets have important technological applications. Previous experiments and simulations have shown that their contact angle deviates from Young's equation. A modified version of Young's equation considering the three-phase line tension (τ) has been widely used in literature, and a wide range of values for τ are reported. We have recently shown that molecular branching affects the liquid-vapour surface tension γ of liquid alkanes. Therefore, the wetting behaviour of surface nanodroplets should be affected by molecular branching. This study conducted molecular dynamics (MD) simulations to gain insight into the wetting behaviour of linear and branched alkane nanodroplets on oleophilic and oleophobic surfaces. We aim to examine the Young equation's validity and branching's effect on fundamental properties, including solid-liquid surface tension γ and line tension τ.

SIMULATIONS

The simulations were performed on a linear alkane, triacontane (CH), as well as four of its branched isomers: 2,6,13,17-tetrapropyloctadecane,2,6,9,10,13,17-hexaethyloctadecane, 2,5,7,8,11,12,15-heptaethylhexadecane and 2,3,6,7,10,11-hexapropyldodecane. Nanodroplets with a diameter of approximately 15 nm were released onto the surfaces, and their contact angles were measured. Additionally, using a novel approach, the solid-liquid surface tension (γ), the validity of Young's equation and line tension for all alkane and surface combinations are determined.

FINDINGS

It was discovered that the calculated γ, deviated from the theoretical γ predicted from Young's equation for all alkanes on oleophilic surfaces. However, this deviation was minimal for branched alkanes on the oleophobic surfaces but more significant for the linear alkane. The findings indicated that γ < 0 for oleophilic surfaces and γ > 0 for oleophobic surfaces. Moreover, it was observed that |γ| was lower for branched molecules and decreased as branching increased. Line tension values were then determined through a novel method, showing τ was positive for oleophilic surfaces ranging from 1.30 × 10 to 6.27 × 10N. On an oleophobic surface, linear alkane shows a negative line tension of -1.15 × 10N and branched alkanes up to two orders of magnitude lower values ranging from -2.09 × 10 to 2.43 × 10N. Line tension values between -1.15 × 10 and + 1.1 × 10N are calculated for various linear alkane and surface combinations. These findings show the dependence of line tension on the contact angle and branching, demonstrating that for linear alkanes, τ is significant, whereas, for branched alkanes, line tension is smaller or negligible for large contact angles.

摘要

假设

表面纳米液滴具有重要的技术应用。先前的实验和模拟表明,它们的接触角偏离了杨氏方程。考虑三相线张力(τ)的杨氏方程修正版已在文献中广泛使用,并且报道了τ的广泛取值范围。我们最近表明,分子支化会影响液态烷烃的液 - 气表面张力γ。因此,表面纳米液滴的润湿行为应受分子支化的影响。本研究进行了分子动力学(MD)模拟,以深入了解线性和支化烷烃纳米液滴在亲油和亲油表面上的润湿行为。我们旨在检验杨氏方程的有效性以及支化对包括固 - 液表面张力γ和线张力τ在内的基本性质的影响。

模拟

对线性烷烃三十烷(CH)及其四种支化异构体进行了模拟:2,6,13,17 - 四丙基十八烷、2,6,9,10,13,17 - 六乙基十八烷、2,5,7,8,11,12,15 - 七乙基十六烷和2,3,6,7,10,11 - 六丙基十二烷。将直径约为15纳米的纳米液滴释放到表面上,并测量其接触角。此外,使用一种新方法确定了所有烷烃和表面组合的固 - 液表面张力(γ)、杨氏方程的有效性和线张力。

研究结果

发现对于亲油表面上的所有烷烃,计算得到的γ偏离了杨氏方程预测的理论γ。然而,对于支化烷烃在疏水表面上这种偏差最小,而对于线性烷烃则更显著。研究结果表明,亲油表面的γ < 0,疏水表面的γ > 一0。此外,观察到支化分子的|γ|较低,并且随着支化增加而降低。然后通过一种新方法确定线张力值,结果表明亲油表面的τ为正,范围从1.30×10至6.27×10N。在疏水表面上,线性烷烃显示出线张力为 - 1.15×10N,支化烷烃的值低两个数量级,范围从 - 2.09×10至2.43×10N。对于各种线性烷烃和表面组合,计算出线张力值在 - 1.15×10和 + 1.1×10N之间。这些结果表明线张力对接触角和支化的依赖性,表明对于线性烷烃,τ是显著的,而对于支化烷烃,对于大接触角线张力较小或可忽略不计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验