Vanaraj Ramkumar, Daniel Santhanaraj, Mayakrishnan Gopiraman, Govindarasu Gunasekaran Karthikeyan, Arumugam Bharathi, Babu Cadiam Mohan, Kim Seong Cheol
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Department of Chemistry, Loyola College, Tamilnadu 600 020, India.
J Colloid Interface Sci. 2024 Jul 15;666:380-392. doi: 10.1016/j.jcis.2024.04.006. Epub 2024 Apr 6.
Melamine-based metal-organic frameworks (MOFs) for high-performance supercapacitor applications are described in this paper. Melamine (Me) is employed as an organic linker, and three metal ions cobalt, nickel, and iron (Co, Ni, Fe) are used ascentral metal ions to manufacture the desired MOF materials (Co-Me, Ni-Me, and Fe-Me). While melamine is an inexpensive organic linker for creating MOF materials, homogenous molecular structures can be difficult to produce. The most effective technique for expanding the molecular structures of MOFs through suitable experimental optimization is used in this work. The MOFs materials are characterized using standard techniques. The kinetics of the materials' reactions are investigated using attenuated total reflectance. X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (P-XRD), Fourier transform infrared (ATR-FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) studies verified the development of the MOFs structure. The surface morphology of the produced materials is investigated using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM). The elements found in MOFs are studied via XPS analysis, energy dispersive X-ray diffraction (EDX), mapping, and mapping. The materials' absorption characteristics were examined by the use of UV-visible absorption spectroscopy. The thermal stability of the materials is examined by thermogravimetric analysis (TGA); these materials are more stable, according to the findings, even at high temperatures. The electrochemical investigation determines the specific capacitance of the materials. The specific capacitance of Co-Me, Ni-Me, and Fe-Me in 3 M KOH electrolyte is 1267.36, 803.22, and 507.59F/g @ 1 A, according to the three-electrode arrangement. The two-electrode device maximizes power and energy density by using an asymmetrical supercapacitor in a 3 M KOH electrolyte. The power and energy densities of Co-Me, Ni-Me, and Fe-Me are 3650.63, 2813.21, and 6210.45 W kg, and 68.43, 46.32, and 42.2 Wh kg, respectively. According to the materials stability test, the MOFs are highly stable after 10,000 cycles. Preliminary results suggest that the materials are suitable for usage in high-end supercapacitor uses.
本文介绍了用于高性能超级电容器应用的三聚氰胺基金属有机框架材料(MOFs)。三聚氰胺(Me)用作有机连接体,三种金属离子钴、镍和铁(Co、Ni、Fe)用作中心金属离子,以制备所需的MOF材料(Co-Me、Ni-Me和Fe-Me)。虽然三聚氰胺是一种用于制备MOF材料的廉价有机连接体,但难以生成均匀的分子结构。本研究采用了通过适当的实验优化来扩展MOF分子结构的最有效技术。使用标准技术对MOF材料进行表征。使用衰减全反射研究材料反应的动力学。X射线光电子能谱(XPS)、粉末X射线衍射(P-XRD)、傅里叶变换红外(ATR-FT-IR)光谱和布鲁诺尔-埃米特-泰勒(BET)研究证实了MOF结构的形成。使用场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)和原子力显微镜(AFM)研究了所制备材料的表面形貌。通过XPS分析、能量色散X射线衍射(EDX)、图谱分析和映射研究了MOF中发现的元素。使用紫外可见吸收光谱检查了材料的吸收特性。通过热重分析(TGA)检查了材料的热稳定性;结果表明,这些材料即使在高温下也更稳定。电化学研究确定了材料的比电容。根据三电极配置,Co-Me、Ni-Me和Fe-Me在3M KOH电解液中的比电容在1A时分别为1267.36、803.22和507.59F/g。两电极装置通过在3M KOH电解液中使用不对称超级电容器使功率和能量密度最大化。Co-Me、Ni-Me和Fe-Me的功率密度分别为3650.63、2813.21和6210.45W/kg,能量密度分别为68.43、46.32和42.2Wh/kg。根据材料稳定性测试,MOF在10000次循环后高度稳定。初步结果表明,这些材料适用于高端超级电容器应用。