Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada.
Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada.
Phys Med Biol. 2024 Apr 30;69(10). doi: 10.1088/1361-6560/ad3dbd.
Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computational time limits the practical application of MC simulations. Prior research used deep learning (DL) for dose prediction as an alternative to MC simulations. While accurate dose predictions akin to MC were attained, graphics processing unit limitations constrained these predictions to large voxels of 3 mm × 3 mm × 3 mm. This study aimed to enable dose predictions as accurate as MC simulations in 1 mm × 1 mm × 1 mm voxels within a clinically acceptable timeframe.Computed tomography scans of 98 breast cancer patients treated with Iridium-192-based HDR BT were used: 70 for training, 14 for validation, and 14 for testing. A new cropping strategy based on the distance to the seed was devised to reduce the volume size, enabling efficient training of 3D DL models using 1 mm × 1 mm × 1 mm dose grids. Additionally, novel DL architecture with layer-level fusion were proposed to predict MC simulated dose to medium-in-medium (). These architectures fuse information from TG-43 dose to water-in-water () with patient tissue composition at the layer-level. Different inputs describing patient body composition were investigated.The proposed approach demonstrated state-of-the-art performance, on par with the MCmaps, but 300 times faster. The mean absolute percent error for dosimetric indices between the MC and DL-predicted complete treatment plans was 0.17% ± 0.15% for the planning target volume, 0.30% ± 0.32% for the skin, 0.82% ± 0.79% for the lung, 0.34% ± 0.29% for the chest walland 1.08% ± 0.98% for the heart.Unlike the time-consuming MC simulations, the proposed novel strategy efficiently converts TG-43maps into precisemaps at high resolution, enabling clinical integration.
蒙特卡罗 (MC) 模拟是准确放疗剂量计算的基准,特别是在考虑组织异质性至关重要的患者特异性高剂量率近距离治疗 (HDR BT) 中。然而,漫长的计算时间限制了 MC 模拟的实际应用。先前的研究使用深度学习 (DL) 进行剂量预测作为 MC 模拟的替代方法。虽然实现了与 MC 相当的准确剂量预测,但图形处理单元的限制将这些预测限制在 3mm×3mm×3mm 的大体素中。本研究旨在在临床可接受的时间内,以 1mm×1mm×1mm 的体素实现与 MC 模拟一样准确的剂量预测。使用 98 名接受基于铱-192 的 HDR BT 治疗的乳腺癌患者的计算机断层扫描进行研究:70 名用于训练,14 名用于验证,14 名用于测试。设计了一种基于种子距离的新裁剪策略来减小体积大小,从而能够使用 1mm×1mm×1mm 的剂量网格有效训练 3D DL 模型。此外,还提出了具有层级融合的新型 DL 架构来预测 MC 模拟的中-中剂量()。这些架构在层级融合 TG-43 剂量到水中()与患者组织组成的信息。研究了不同描述患者身体组成的输入。所提出的方法表现出了最先进的性能,与 MCmaps 相当,但速度快 300 倍。MC 和 DL 预测完整治疗计划之间剂量学指标的平均绝对百分比误差为:计划靶区为 0.17%±0.15%,皮肤为 0.30%±0.32%,肺为 0.82%±0.79%,胸壁为 0.34%±0.29%,心脏为 1.08%±0.98%。与耗时的 MC 模拟不同,所提出的新策略可以高效地将 TG-43 映射转换为高分辨率的精确映射,从而实现临床整合。