Suppr超能文献

基于深度学习的个体化近距离治疗剂量重建。

Personalized brachytherapy dose reconstruction using deep learning.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.

Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Comput Biol Med. 2021 Sep;136:104755. doi: 10.1016/j.compbiomed.2021.104755. Epub 2021 Aug 8.

Abstract

BACKGROUND AND PURPOSE

Accurate calculation of the absorbed dose delivered to the tumor and normal tissues improves treatment gain factor, which is the major advantage of brachytherapy over external radiation therapy. To address the simplifications of TG-43 assumptions that ignore the dosimetric impact of medium heterogeneities, we proposed a deep learning (DL)-based approach, which improves the accuracy while requiring a reasonable computation time.

MATERIALS AND METHODS

We developed a Monte Carlo (MC)-based personalized brachytherapy dosimetry simulator (PBrDoseSim), deployed to generate patient-specific dose distributions. A deep neural network (DNN) was trained to predict personalized dose distributions derived from MC simulations, serving as ground truth. The paired channel input used for the training is composed of dose distribution kernel in water medium along with the full-volumetric density maps obtained from CT images reflecting medium heterogeneity.

RESULTS

The predicted single-dwell dose kernels were in good agreement with MC-based kernels serving as reference, achieving a mean relative absolute error (MRAE) and mean absolute error (MAE) of 1.16 ± 0.42% and 4.2 ± 2.7 × 10 (Gy.sec/voxel), respectively. The MRAE of the dose volume histograms (DVHs) between the DNN and MC calculations in the clinical target volume were 1.8 ± 0.86%, 0.56 ± 0.56%, and 1.48 ± 0.72% for D90, V150, and V100, respectively. For bladder, sigmoid, and rectum, the MRAE of D5cc between the DNN and MC calculations were 2.7 ± 1.7%, 1.9 ± 1.3%, and 2.1 ± 1.7%, respectively.

CONCLUSION

The proposed DNN-based personalized brachytherapy dosimetry approach exhibited comparable performance to the MC method while overcoming the computational burden of MC calculations and oversimplifications of TG-43.

摘要

背景与目的

准确计算肿瘤和正常组织的吸收剂量可提高治疗增益因子,这是近距离放射治疗相对于外部放射治疗的主要优势。为了解决 TG-43 假设忽略介质不均匀性对剂量学影响的简化问题,我们提出了一种基于深度学习(DL)的方法,该方法在提高准确性的同时,还需要合理的计算时间。

材料与方法

我们开发了一种基于蒙特卡罗(MC)的个体化近距离放射治疗剂量模拟(PBrDoseSim),用于生成患者特异性剂量分布。训练了一个深度神经网络(DNN)来预测来自 MC 模拟的个体化剂量分布,作为基准。用于训练的配对通道输入由水介质中的剂量分布核以及从反映介质不均匀性的 CT 图像获得的全容积密度图组成。

结果

预测的单次驻留剂量核与作为参考的 MC 基核吻合良好,平均相对绝对误差(MRAE)和平均绝对误差(MAE)分别为 1.16±0.42%和 4.2±2.7×10(Gy.sec/voxel)。DNN 和 MC 计算在临床靶体积中的剂量体积直方图(DVH)之间的 MRAE 分别为 D90、V150 和 V100 的 1.8±0.86%、0.56±0.56%和 1.48±0.72%。对于膀胱、乙状结肠和直肠,DNN 和 MC 计算之间的 D5cc 的 MRAE 分别为 2.7±1.7%、1.9±1.3%和 2.1±1.7%。

结论

所提出的基于 DNN 的个体化近距离放射治疗剂量方法与 MC 方法具有相当的性能,同时克服了 MC 计算的计算负担和 TG-43 的过度简化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验