Suppr超能文献

使用卷积神经网络预测赖氨酸甲基化位点。

Predicting lysine methylation sites using a convolutional neural network.

机构信息

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States.

Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

出版信息

Methods. 2024 Jun;226:127-132. doi: 10.1016/j.ymeth.2024.04.007. Epub 2024 Apr 9.

Abstract

Protein lysine methylation is a particular type of post translational modification that plays an important role in both histone and non-histone function regulation in proteins. Deregulation caused by lysine methyltransferases has been identified as the cause of several diseases including cancer as well as both mental and developmental disorders. Identifying lysine methylation sites is a critical step in both early diagnosis and drug design. This study proposes a new Machine Learning method called CNN-Meth for predicting lysine methylation sites using a convolutional neural network (CNN). Our model is trained using evolutionary, structural, and physicochemical-based presentation along with binary encoding. Unlike previous studies, instead of extracting handcrafted features, we use CNN to automatically extract features from different presentations of amino acids to avoid information loss. Automated feature extraction from these representations of amino acids as well as CNN as a classifier have never been used for this problem. Our results demonstrate that CNN-Meth can significantly outperform previous methods for predicting methylation sites. It achieves 96.0%, 85.1%, 96.4%, and 0.65 in terms of Accuracy, Sensitivity, Specificity, and Matthew's Correlation Coefficient (MCC), respectively. CNN-Meth and its source code are publicly available at https://github.com/MLBC-lab/CNN-Meth.

摘要

蛋白质赖氨酸甲基化是一种特殊的翻译后修饰类型,在组蛋白和非组蛋白功能调节中都起着重要作用。赖氨酸甲基转移酶的失调已被确定为包括癌症在内的几种疾病以及精神和发育障碍的原因。鉴定赖氨酸甲基化位点是早期诊断和药物设计的关键步骤。本研究提出了一种新的机器学习方法,称为 CNN-Meth,用于使用卷积神经网络(CNN)预测赖氨酸甲基化位点。我们的模型使用进化、结构和物理化学为基础的表示以及二进制编码进行训练。与之前的研究不同,我们不是提取手工制作的特征,而是使用 CNN 自动从氨基酸的不同表示中提取特征,以避免信息丢失。从未使用过这些氨基酸表示形式的自动特征提取以及 CNN 作为分类器来解决此问题。我们的结果表明,CNN-Meth 可以显著优于以前用于预测甲基化位点的方法。它在准确性、敏感性、特异性和马修相关系数(MCC)方面的得分分别为 96.0%、85.1%、96.4%和 0.65。CNN-Meth 及其源代码可在 https://github.com/MLBC-lab/CNN-Meth 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验