Suppr超能文献

CNN-Meth:一种利用基于进化信息的蛋白质建模准确预测赖氨酸甲基化位点的工具。

CNN-Meth: A Tool to Accurately Predict Lysine Methylation Sites Using Evolutionary Information-Based Protein Modeling.

作者信息

Spadaro Austin, Sharma Alok, Dehzangi Iman

机构信息

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.

Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.

出版信息

Methods Mol Biol. 2025;2941:177-187. doi: 10.1007/978-1-0716-4623-6_11.

Abstract

Lysine methylation is a crucial posttranslational modification influencing both histone and nonhistone protein functions. Disruptions in lysine methyltransferase activity are linked to numerous diseases, including various cancers and developmental disorders. Accurate identification of lysine methylation sites is essential for early diagnosis and therapeutic development. Here, we present CNN-Meth, a newly developed Web-based utility that employs a convolutional neural network (CNN) to predict lysine methylation sites. CNN-Meth leverages evolutionary, structural, and physicochemical data alongside binary encoding for its training process. Evolutionary and structural features used to build CNN-Meth are extracted using protein modeling, which works similarly to using Protein Language Models (PLM). Unlike traditional approaches that rely on manually extracted features, CNN-Meth uses CNNs for automated feature extraction, ensuring minimal information loss. This novel methodology enhances prediction accuracy, achieving 96.0% Accuracy, 85.1% Sensitivity, 96.4% Specificity, and a Matthew's Correlation Coefficient (MCC) of 0.65. This demonstrates the possible effectiveness of using PLM to predict Methylation sites as a future direction. The CNN-Meth tool and its source code are readily accessible at https://github.com/MLBC-lab/CNN-Meth , providing a robust resource for researchers and clinicians.

摘要

赖氨酸甲基化是一种关键的翻译后修饰,影响组蛋白和非组蛋白的功能。赖氨酸甲基转移酶活性的破坏与多种疾病相关,包括各种癌症和发育障碍。准确识别赖氨酸甲基化位点对于早期诊断和治疗开发至关重要。在此,我们展示了CNN-Meth,这是一种新开发的基于网络的工具,它采用卷积神经网络(CNN)来预测赖氨酸甲基化位点。CNN-Meth在其训练过程中利用进化、结构和物理化学数据以及二进制编码。用于构建CNN-Meth的进化和结构特征是通过蛋白质建模提取的,其工作方式类似于使用蛋白质语言模型(PLM)。与依赖手动提取特征的传统方法不同,CNN-Meth使用CNN进行自动特征提取,确保信息损失最小。这种新颖的方法提高了预测准确性,准确率达到96.0%,灵敏度达到85.1%,特异性达到96.4%,马修斯相关系数(MCC)为0.65。这证明了使用PLM预测甲基化位点作为未来方向的潜在有效性。CNN-Meth工具及其源代码可在https://github.com/MLBC-lab/CNN-Meth上轻松获取,为研究人员和临床医生提供了强大的资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验