Suppr超能文献

人工智能和叙事嵌入技术通过分娩故事检测产后创伤后应激障碍。

AI and narrative embeddings detect PTSD following childbirth via birth stories.

机构信息

The School of Business Administration, Bar-Ilan University, Ramat Gan, 5290002, Israel.

Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.

出版信息

Sci Rep. 2024 Apr 11;14(1):8336. doi: 10.1038/s41598-024-54242-2.

Abstract

Free-text analysis using machine learning (ML)-based natural language processing (NLP) shows promise for diagnosing psychiatric conditions. Chat Generative Pre-trained Transformer (ChatGPT) has demonstrated preliminary initial feasibility for this purpose; however, whether it can accurately assess mental illness remains to be determined. This study evaluates the effectiveness of ChatGPT and the text-embedding-ada-002 (ADA) model in detecting post-traumatic stress disorder following childbirth (CB-PTSD), a maternal postpartum mental illness affecting millions of women annually, with no standard screening protocol. Using a sample of 1295 women who gave birth in the last six months and were 18+ years old, recruited through hospital announcements, social media, and professional organizations, we explore ChatGPT's and ADA's potential to screen for CB-PTSD by analyzing maternal childbirth narratives. The PTSD Checklist for DSM-5 (PCL-5; cutoff 31) was used to assess CB-PTSD. By developing an ML model that utilizes numerical vector representation of the ADA model, we identify CB-PTSD via narrative classification. Our model outperformed (F1 score: 0.81) ChatGPT and six previously published large text-embedding models trained on mental health or clinical domains data, suggesting that the ADA model can be harnessed to identify CB-PTSD. Our modeling approach could be generalized to assess other mental health disorders.

摘要

使用基于机器学习 (ML) 的自然语言处理 (NLP) 的自由文本分析在诊断精神疾病方面显示出前景。聊天生成式预训练转换器 (ChatGPT) 已经初步证明了这一目的的初步可行性;然而,它是否能够准确评估精神疾病仍有待确定。本研究评估了 ChatGPT 和文本嵌入 ada-002 (ADA) 模型在检测产后创伤后应激障碍 (CB-PTSD) 方面的有效性,这是一种影响每年数百万妇女的产后精神疾病,目前没有标准的筛查方案。我们使用了通过医院公告、社交媒体和专业组织招募的 1295 名最近六个月分娩且年龄在 18 岁以上的妇女的样本,通过分析产妇分娩的叙述,探讨了 ChatGPT 和 ADA 筛查 CB-PTSD 的潜力。使用用于评估 CB-PTSD 的 DSM-5 创伤后应激障碍检查表 (PCL-5;截止值 31)。通过开发一种利用 ADA 模型的数值向量表示的 ML 模型,我们通过叙述分类来识别 CB-PTSD。我们的模型表现优于 ChatGPT 和之前发表的六个基于心理健康或临床领域数据训练的大型文本嵌入模型(F1 得分:0.81),表明可以利用 ADA 模型来识别 CB-PTSD。我们的建模方法可以推广到评估其他心理健康障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0868/11009279/d5414cd13d4f/41598_2024_54242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验