Suppr超能文献

皮质-小脑协调促进神经假体控制。

Cortico-cerebellar coordination facilitates neuroprosthetic control.

机构信息

Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Bioengineering Graduate Program, Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, CA, USA.

出版信息

Sci Adv. 2024 Apr 12;10(15):eadm8246. doi: 10.1126/sciadv.adm8246.

Abstract

Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned a neuroprosthetic/brain-machine interface (BMI) task. In neuroprosthetic task, actuator movements are causally linked to M1 "direct" neurons that drive the decoder for successful task execution. However, it is unknown how task-related M1 activity interacts with the cerebellum. We observed a notable 3 to 6 hertz coherence that emerged between these regions' local field potentials (LFPs) with learning that also modulated task-related spiking. We identified robust task-related indirect modulation in the cerebellum, which developed a preferential relationship with M1 task-related activity. Inhibiting cerebellar cortical and deep nuclei activity through optogenetics led to performance impairments in M1-driven neuroprosthetic control. Together, these results demonstrate that cerebellar influence is necessary for M1-driven neuroprosthetic control.

摘要

时间协调的神经活动是神经系统功能和有目的行为的核心。尽管如此,仍然缺乏证据表明皮质和皮质下区域内的这种协调活动如何控制行为。我们在大鼠学习神经假体/脑机接口 (BMI) 任务时,研究了初级运动皮层 (M1) 和对侧小脑皮层之间的这种关系。在神经假体任务中,执行器运动与直接驱动解码器以成功执行任务的 M1“直接”神经元因果相关。然而,尚不清楚与任务相关的 M1 活动如何与小脑相互作用。我们观察到,随着学习的进行,这些区域的局部场电位 (LFP) 之间出现了显著的 3 到 6 赫兹相干性,并且也调制了与任务相关的尖峰放电。我们在小脑皮层中识别出强大的与任务相关的间接调制,这与 M1 与任务相关的活动发展出了优先关系。通过光遗传学抑制小脑皮层和深部核团的活动会导致 M1 驱动的神经假体控制性能受损。总之,这些结果表明,小脑的影响对于 M1 驱动的神经假体控制是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/618d/11014440/86d4827dbad8/sciadv.adm8246-f1.jpg

相似文献

1
Cortico-cerebellar coordination facilitates neuroprosthetic control.
Sci Adv. 2024 Apr 12;10(15):eadm8246. doi: 10.1126/sciadv.adm8246.
2
Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
J Neurosci. 2021 Dec 8;41(49):10120-10129. doi: 10.1523/JNEUROSCI.1397-21.2021. Epub 2021 Nov 3.
3
Modulation of Neural Spiking in Motor Cortex-Cerebellar Networks during Sleep Spindles.
eNeuro. 2024 May 6;11(5). doi: 10.1523/ENEURO.0150-23.2024. Print 2024 May.
4
Selective modulation of cortical population dynamics during neuroprosthetic skill learning.
Sci Rep. 2022 Sep 24;12(1):15948. doi: 10.1038/s41598-022-20218-3.
5
Emergent Low-Frequency Activity in Cortico-Cerebellar Networks with Motor Skill Learning.
eNeuro. 2023 Feb 21;10(2). doi: 10.1523/ENEURO.0011-23.2023. Print 2023 Feb.
6
Adenosine A receptor blockade improves neuroprosthetic learning by volitional control of population calcium signal in M1 cortical neurons.
Neuropharmacology. 2020 Nov 1;178:108250. doi: 10.1016/j.neuropharm.2020.108250. Epub 2020 Jul 26.
7
Robust neuroprosthetic control from the stroke perilesional cortex.
J Neurosci. 2015 Jun 3;35(22):8653-61. doi: 10.1523/JNEUROSCI.5007-14.2015.
8
Cortico-cerebellar coherence during a precision grip task in the monkey.
J Neurophysiol. 2006 Feb;95(2):1194-206. doi: 10.1152/jn.00935.2005.

引用本文的文献

1
Effects of iron accumulation and its chelation on oxidative stress in intracortical implants.
Acta Biomater. 2025 Jun 15;200:703-723. doi: 10.1016/j.actbio.2025.05.026. Epub 2025 May 10.

本文引用的文献

1
Optimal routing to cerebellum-like structures.
Nat Neurosci. 2023 Sep;26(9):1630-1641. doi: 10.1038/s41593-023-01403-7. Epub 2023 Aug 21.
2
Emergent Low-Frequency Activity in Cortico-Cerebellar Networks with Motor Skill Learning.
eNeuro. 2023 Feb 21;10(2). doi: 10.1523/ENEURO.0011-23.2023. Print 2023 Feb.
3
Cerebro-cerebellar networks facilitate learning through feedback decoupling.
Nat Commun. 2023 Jan 4;14(1):51. doi: 10.1038/s41467-022-35658-8.
4
Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
J Neurosci. 2021 Dec 8;41(49):10120-10129. doi: 10.1523/JNEUROSCI.1397-21.2021. Epub 2021 Nov 3.
5
Disrupting cortico-cerebellar communication impairs dexterity.
Elife. 2021 Jul 29;10:e65906. doi: 10.7554/eLife.65906.
6
Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke.
Cell Rep. 2021 Jul 13;36(2):109370. doi: 10.1016/j.celrep.2021.109370.
7
8
Rethinking brain-wide interactions through multi-region 'network of networks' models.
Curr Opin Neurobiol. 2020 Dec;65:146-151. doi: 10.1016/j.conb.2020.11.003. Epub 2020 Nov 27.
10
Plug-and-play control of a brain-computer interface through neural map stabilization.
Nat Biotechnol. 2021 Mar;39(3):326-335. doi: 10.1038/s41587-020-0662-5. Epub 2020 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验