Suppr超能文献

神经假肢学习过程中局部和跨区域相互作用的时间尺度。

Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.

机构信息

Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158.

Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94158.

出版信息

J Neurosci. 2021 Dec 8;41(49):10120-10129. doi: 10.1523/JNEUROSCI.1397-21.2021. Epub 2021 Nov 3.

Abstract

How does the brain integrate signals with different timescales to drive purposeful actions? Brain-machine interfaces (BMIs) offer a powerful tool to causally test how distributed neural networks achieve specific neural patterns. During neuroprosthetic learning, actuator movements are causally linked to primary motor cortex (M1) neurons, i.e., "direct" neurons that project to the decoder and whose firing is required to successfully perform the task. However, it is unknown how such direct M1 neurons interact with both "indirect" local (in M1 but not part of the decoder) and across area neural populations (e.g., in premotor cortex/M2), all of which are embedded in complex biological recurrent networks. Here, we trained male rats to perform a M1-BMI task and simultaneously recorded the activity of indirect neurons in both M2 and M1. We found that both M2 and M1 indirect neuron populations could be used to predict the activity of the direct neurons (i.e., "BMI-potent activity"). Interestingly, compared with M1 indirect activity, M2 neural activity was correlated with BMI-potent activity across a longer set of time lags, and the timescale of population activity patterns evolved more slowly. M2 units also predicted the activity of both M1 direct and indirect neural populations, suggesting that M2 population dynamics provide a continuous modulatory influence on M1 activity as a whole, rather than a moment-by-moment influence solely on neurons most relevant to a task. Together, our results indicate that longer timescale M2 activity provides modulatory influence over extended time lags on shorter-timescale control signals in M1. A central question in the study of motor control is whether primary motor cortex (M1) and premotor cortex (M2) interact through task-specific subpopulations of neurons, or whether tasks engage broader correlated networks. Brain-machine interfaces (BMIs) are powerful tools to study cross-area interactions. Here, we performed simultaneous recordings of M1 and M2 in a BMI task using a subpopulation of M1 neurons (direct neurons). We found that activity outside of direct neurons in M1 and M2 was predictive of M1-BMI task activity, and that M2 activity evolved at slower timescales than M1. These findings suggest that M2 provides a continuous modulatory influence on M1 as a whole, supporting a model of interactions through broad correlated networks rather than task-specific neural subpopulations.

摘要

大脑如何整合具有不同时间尺度的信号以驱动有目的的动作?脑机接口 (BMI) 提供了一个强大的工具,可以因果地测试分布式神经网络如何实现特定的神经模式。在神经假肢学习期间,执行器运动与初级运动皮层 (M1) 神经元因果相关,即投射到解码器的“直接”神经元,其发射是成功执行任务所必需的。然而,尚不清楚这种直接的 M1 神经元如何与“间接”局部(在 M1 中但不是解码器的一部分)和跨区域神经群体(例如,在运动前皮层/M2 中)相互作用,所有这些都嵌入在复杂的生物递归网络中。在这里,我们训练雄性大鼠执行 M1-BMI 任务,并同时记录 M2 和 M1 中间接神经元的活动。我们发现,M2 和 M1 间接神经元群体都可以用于预测直接神经元的活动(即“BMI 有效活动”)。有趣的是,与 M1 间接活动相比,M2 神经活动与 BMI 有效活动在更长的时间滞后范围内相关,并且群体活动模式的时间尺度演变得更慢。M2 单元还预测了 M1 直接和间接神经元群体的活动,这表明 M2 群体动力学作为一个整体对 M1 活动提供了持续的调制影响,而不仅仅是对与任务最相关的神经元的逐点影响。总的来说,我们的结果表明,较长时间尺度的 M2 活动在较长的时间滞后范围内对 M1 中的短时间尺度控制信号提供调制影响。运动控制研究中的一个核心问题是初级运动皮层 (M1) 和运动前皮层 (M2) 是否通过神经元的特定任务子群体相互作用,或者任务是否涉及更广泛的相关网络。脑机接口 (BMI) 是研究跨区域相互作用的强大工具。在这里,我们在 BMI 任务中使用 M1 神经元的亚群(直接神经元)同时记录 M1 和 M2 的活动。我们发现,M1 和 M2 中直接神经元之外的活动可预测 M1-BMI 任务活动,并且 M2 活动的演变时间尺度比 M1 慢。这些发现表明,M2 作为一个整体对 M1 提供了持续的调制影响,支持通过广泛的相关网络而不是特定任务的神经元亚群进行相互作用的模型。

相似文献

引用本文的文献

本文引用的文献

1
A Diversity of Intrinsic Timescales Underlie Neural Computations.内在时间尺度的多样性是神经计算的基础。
Front Neural Circuits. 2020 Dec 21;14:615626. doi: 10.3389/fncir.2020.615626. eCollection 2020.
8
Single-trial neural dynamics are dominated by richly varied movements.单试次神经动力学由丰富多样的运动所主导。
Nat Neurosci. 2019 Oct;22(10):1677-1686. doi: 10.1038/s41593-019-0502-4. Epub 2019 Sep 24.
9
Emergent modular neural control drives coordinated motor actions.紧急模块化神经控制驱动协调的运动动作。
Nat Neurosci. 2019 Jul;22(7):1122-1131. doi: 10.1038/s41593-019-0407-2. Epub 2019 May 27.
10
Spontaneous behaviors drive multidimensional, brainwide activity.自发性行为驱动多维全脑活动。
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验