Suppr超能文献

最优路径至类小脑结构。

Optimal routing to cerebellum-like structures.

机构信息

Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.

National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.

出版信息

Nat Neurosci. 2023 Sep;26(9):1630-1641. doi: 10.1038/s41593-023-01403-7. Epub 2023 Aug 21.

Abstract

The vast expansion from mossy fibers to cerebellar granule cells (GrC) produces a neural representation that supports functions including associative and internal model learning. This motif is shared by other cerebellum-like structures and has inspired numerous theoretical models. Less attention has been paid to structures immediately presynaptic to GrC layers, whose architecture can be described as a 'bottleneck' and whose function is not understood. We therefore develop a theory of cerebellum-like structures in conjunction with their afferent pathways that predicts the role of the pontine relay to cerebellum and the glomerular organization of the insect antennal lobe. We highlight a new computational distinction between clustered and distributed neuronal representations that is reflected in the anatomy of these two brain structures. Our theory also reconciles recent observations of correlated GrC activity with theories of nonlinear mixing. More generally, it shows that structured compression followed by random expansion is an efficient architecture for flexible computation.

摘要

苔状纤维到小脑颗粒细胞(GrC)的大量扩展产生了一种神经表示,支持包括联想和内部模型学习在内的功能。这一模式被其他类似小脑的结构所共享,并激发了许多理论模型。然而,对于位于 GrC 层之前的结构,其结构可以被描述为“瓶颈”,其功能尚不清楚,因此受到的关注较少。我们因此提出了一个与它们的传入通路相结合的类似小脑结构的理论,该理论预测了桥脑中继到小脑的作用以及昆虫触角叶的肾小球组织。我们强调了一种新的计算区分,即聚类和分布式神经元表示之间的区分,这反映在这两个脑结构的解剖结构中。我们的理论还调和了最近对 GrC 活动相关性的观察与非线性混合理论之间的关系。更一般地说,它表明结构化压缩后随机扩展是一种灵活计算的有效架构。

相似文献

1
Optimal routing to cerebellum-like structures.
Nat Neurosci. 2023 Sep;26(9):1630-1641. doi: 10.1038/s41593-023-01403-7. Epub 2023 Aug 21.
2
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
J Neurosci. 2017 Dec 13;37(50):12153-12166. doi: 10.1523/JNEUROSCI.0588-17.2017. Epub 2017 Nov 8.
3
Task-dependent optimal representations for cerebellar learning.
Elife. 2023 Sep 6;12:e82914. doi: 10.7554/eLife.82914.
4
Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.
J Neurosci. 1992 Feb;12(2):619-34. doi: 10.1523/JNEUROSCI.12-02-00619.1992.
5
Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition.
J Neurophysiol. 2019 Jan 1;121(1):105-114. doi: 10.1152/jn.00492.2018. Epub 2018 Oct 3.
6
Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition.
J Neurosci. 2019 Feb 13;39(7):1169-1181. doi: 10.1523/JNEUROSCI.1448-18.2018. Epub 2018 Dec 26.
7
Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task.
Cell. 2019 Apr 18;177(3):669-682.e24. doi: 10.1016/j.cell.2019.02.019. Epub 2019 Mar 28.
10
A cerebellar granule cell-climbing fiber computation to learn to track long time intervals.
Neuron. 2024 Aug 21;112(16):2749-2764.e7. doi: 10.1016/j.neuron.2024.05.019. Epub 2024 Jun 12.

引用本文的文献

1
Temporal resolution of spike coding in feedforward networks with signal convergence and divergence.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012971. doi: 10.1371/journal.pcbi.1012971. eCollection 2025 Apr.
2
Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.
Nat Commun. 2024 Dec 30;15(1):10913. doi: 10.1038/s41467-024-55315-6.
3
Barcode activity in a recurrent network model of the hippocampus enables efficient memory binding.
bioRxiv. 2024 Sep 18:2024.09.09.612073. doi: 10.1101/2024.09.09.612073.
4
Temporal resolution of spike coding in feedforward networks with signal convergence and divergence.
bioRxiv. 2024 Oct 28:2024.07.08.602598. doi: 10.1101/2024.07.08.602598.
5
Cortico-cerebellar coordination facilitates neuroprosthetic control.
Sci Adv. 2024 Apr 12;10(15):eadm8246. doi: 10.1126/sciadv.adm8246.
6
Specific connectivity optimizes learning in thalamocortical loops.
Cell Rep. 2024 Apr 23;43(4):114059. doi: 10.1016/j.celrep.2024.114059. Epub 2024 Apr 10.
7
Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions.
Front Syst Neurosci. 2023 Sep 7;17:1211530. doi: 10.3389/fnsys.2023.1211530. eCollection 2023.
8
Task-dependent optimal representations for cerebellar learning.
Elife. 2023 Sep 6;12:e82914. doi: 10.7554/eLife.82914.
9
Cerebellum as a kernel machine: A novel perspective on expansion recoding in granule cell layer.
Front Comput Neurosci. 2022 Dec 21;16:1062392. doi: 10.3389/fncom.2022.1062392. eCollection 2022.

本文引用的文献

1
Early selection of task-relevant features through population gating.
Nat Commun. 2023 Oct 27;14(1):6837. doi: 10.1038/s41467-023-42519-5.
2
Task-dependent optimal representations for cerebellar learning.
Elife. 2023 Sep 6;12:e82914. doi: 10.7554/eLife.82914.
3
Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2117484120. doi: 10.1073/pnas.2117484120. Epub 2023 Jul 10.
5
Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2018422118.
6
Disrupting cortico-cerebellar communication impairs dexterity.
Elife. 2021 Jul 29;10:e65906. doi: 10.7554/eLife.65906.
7
Cerebellar granule cell axons support high-dimensional representations.
Nat Neurosci. 2021 Aug;24(8):1142-1150. doi: 10.1038/s41593-021-00873-x. Epub 2021 Jun 24.
8
Information flow, cell types and stereotypy in a full olfactory connectome.
Elife. 2021 May 25;10:e66018. doi: 10.7554/eLife.66018.
9
Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set.
Science. 2020 Dec 18;370(6523). doi: 10.1126/science.abd5059.
10
Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain.
Curr Biol. 2020 Aug 17;30(16):3183-3199.e6. doi: 10.1016/j.cub.2020.06.042. Epub 2020 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验