Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario, M5S 3E2, Canada; Division of Neurosurgery, Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1×8, Canada.
Neurosciences and Mental Health, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.
Seizure. 2024 Apr;117:293-297. doi: 10.1016/j.seizure.2024.04.002. Epub 2024 Apr 4.
PURPOSE: Stereoelectroencephalography (sEEG) is increasingly utilized for localization of seizure foci, functional mapping, and neurocognitive research due to its ability to target deep and difficult to reach anatomical locations and to study in vivo brain function with a high signal-to-noise ratio. The research potential of sEEG is constrained by the need for accurate localization of the implanted electrodes in a common template space for group analyses. METHODS: We present an algorithm to automate the grouping of sEEG electrodes by trajectories, labelled by target and insertion point. This algorithm forms the core of a pipeline that fully automates the entire process of electrode localization in standard space, using raw CT and MRI images to produce atlas labelled MNI coordinates. RESULTS: Across 196 trajectories from 20 patients, the pipeline successfully processed 190 trajectories with localizations within 0.25±0.55 mm of the manual annotation by two reviewers. Six electrode trajectories were not directly identified due to metal artifacts and locations were interpolated based on the first and last contact location and the number of contacts in that electrode as listed in the surgical record. CONCLUSION: We introduce our algorithm and pipeline for automatically localizing, grouping, and classifying sEEG electrodes from raw CT and MRI. Our algorithm adds to existing pipelines and toolboxes for electrode localization by automating the manual step of marking and grouping electrodes, thereby expedites the analyses of sEEG data, particularly in large datasets.
目的:立体脑电图(sEEG)因其能够靶向深部和难以到达的解剖位置,以及以高信噪比研究体内大脑功能,因此越来越多地用于定位癫痫灶、功能映射和神经认知研究。sEEG 的研究潜力受到需要将植入电极在常见模板空间中进行准确定位以进行组分析的限制。
方法:我们提出了一种通过轨迹对 sEEG 电极进行分组的算法,这些轨迹由目标和插入点标记。该算法是一个管道的核心,该管道使用原始 CT 和 MRI 图像生成贴有图谱标签的 MNI 坐标,完全自动化标准空间中电极定位的整个过程。
结果:在 20 名患者的 196 条轨迹中,该管道成功处理了 190 条轨迹,其中 190 条轨迹的定位与两位审阅者的手动注释相差 0.25±0.55 毫米。由于金属伪影,有 6 个电极轨迹无法直接识别,位置是根据电极的第一个和最后一个接触位置以及手术记录中列出的电极中的接触数量进行插值的。
结论:我们介绍了我们的算法和用于从原始 CT 和 MRI 自动定位、分组和分类 sEEG 电极的管道。我们的算法通过自动化标记和分组电极的手动步骤,为电极定位的现有管道和工具包增加了功能,从而加快了 sEEG 数据分析的速度,特别是在大型数据集的情况下。
J Neurosurg Pediatr. 2018-10
Neurol Med Chir (Tokyo). 2017-8-15
J Clin Neurosci. 2024-9
J Neural Eng. 2024-8-29