文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用自动病灶检测规划立体脑电图:回顾性可行性研究。

Planning stereoelectroencephalography using automated lesion detection: Retrospective feasibility study.

机构信息

Wellcome Centre for Human Neuroimaging, University College London, London, UK.

Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.

出版信息

Epilepsia. 2020 Jul;61(7):1406-1416. doi: 10.1111/epi.16574. Epub 2020 Jun 13.


DOI:10.1111/epi.16574
PMID:32533794
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8432161/
Abstract

OBJECTIVE: This retrospective, cross-sectional study evaluated the feasibility and potential benefits of incorporating deep-learning on structural magnetic resonance imaging (MRI) into planning stereoelectroencephalography (sEEG) implantation in pediatric patients with diagnostically complex drug-resistant epilepsy. This study aimed to assess the degree of colocalization between automated lesion detection and the seizure onset zone (SOZ) as assessed by sEEG. METHODS: A neural network classifier was applied to cortical features from MRI data from three cohorts. (1) The network was trained and cross-validated using 34 patients with visible focal cortical dysplasias (FCDs). (2) Specificity was assessed in 20 pediatric healthy controls. (3) Feasibility of incorporation into sEEG implantation plans was evaluated in 34 sEEG patients. Coordinates of sEEG contacts were coregistered with classifier-predicted lesions. sEEG contacts in seizure onset and irritative tissue were identified by clinical neurophysiologists. A distance of <10 mm between SOZ contacts and classifier-predicted lesions was considered colocalization. RESULTS: In patients with radiologically defined lesions, classifier sensitivity was 74% (25/34 lesions detected). No clusters were detected in the controls (specificity = 100%). Of the total 34 sEEG patients, 21 patients had a focal cortical SOZ, of whom eight were histopathologically confirmed as having an FCD. The algorithm correctly detected seven of eight of these FCDs (86%). In patients with histopathologically heterogeneous focal cortical lesions, there was colocalization between classifier output and SOZ contacts in 62%. In three patients, the electroclinical profile was indicative of focal epilepsy, but no SOZ was localized on sEEG. In these patients, the classifier identified additional abnormalities that had not been implanted. SIGNIFICANCE: There was a high degree of colocalization between automated lesion detection and sEEG. We have created a framework for incorporation of deep-learning-based MRI lesion detection into sEEG implantation planning. Our findings support the prospective evaluation of automated MRI analysis to plan optimal electrode trajectories.

摘要

目的:本回顾性、横断面研究评估了将深度学习应用于结构性磁共振成像(MRI),并将其纳入到儿童药物难治性癫痫诊断性复杂患者立体脑电图(sEEG)植入计划中的可行性和潜在益处。本研究旨在评估自动病变检测与 sEEG 评估的致痫区(SOZ)之间的重合程度。

方法:应用神经网络分类器对来自三个队列的 MRI 数据的皮质特征进行分析。(1)使用 34 例可见局灶性皮质发育不良(FCD)的患者进行网络训练和交叉验证。(2)在 20 例儿科健康对照者中评估特异性。(3)在 34 例 sEEG 患者中评估纳入 sEEG 植入计划的可行性。sEEG 触点的坐标与分类器预测的病变进行配准。临床神经生理学家识别 sEEG 触点的起始发作和刺激性组织。SOZ 触点与分类器预测病变之间的距离<10mm 被认为是重合的。

结果:在有影像学定义病变的患者中,分类器的敏感性为 74%(25/34 个病变被检测到)。对照组中未检测到簇(特异性=100%)。在总共 34 例 sEEG 患者中,21 例患者有局灶性皮质 SOZ,其中 8 例经组织病理学证实为 FCD。该算法正确检测到 8 例 FCD 中的 7 例(86%)。在组织病理学上具有异质性局灶性皮质病变的患者中,分类器输出与 SOZ 触点之间有 62%的重合。在 3 例患者中,电临床特征提示为局灶性癫痫,但 sEEG 未定位到 SOZ。在这些患者中,分类器识别出了未植入的其他异常。

意义:自动病变检测与 sEEG 之间有高度的重合。我们已经创建了一个将基于深度学习的 MRI 病变检测纳入 sEEG 植入计划的框架。我们的发现支持前瞻性评估自动 MRI 分析,以规划最佳电极轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/576098cc4a46/EPI-61-1406-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/1939b3508f3f/EPI-61-1406-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/8fc7845c9337/EPI-61-1406-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/576098cc4a46/EPI-61-1406-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/1939b3508f3f/EPI-61-1406-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/8fc7845c9337/EPI-61-1406-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85fe/8432161/576098cc4a46/EPI-61-1406-g001.jpg

相似文献

[1]
Planning stereoelectroencephalography using automated lesion detection: Retrospective feasibility study.

Epilepsia. 2020-6-13

[2]
The utility of Multicentre Epilepsy Lesion Detection (MELD) algorithm in identifying epileptic activity and predicting seizure freedom in MRI lesion-negative paediatric patients.

Epilepsy Res. 2024-10

[3]
Lesion detection in epilepsy surgery: Lessons from a prospective evaluation of a machine learning algorithm.

Dev Med Child Neurol. 2024-2

[4]
Safety and efficacy of stereoelectroencephalography in pediatric focal epilepsy: a single-center experience.

J Neurosurg Pediatr. 2018-10

[5]
Early outcomes of stereoelectroencephalography followed by MR-guided laser interstitial thermal therapy: a paradigm for minimally invasive epilepsy surgery.

Neurosurg Focus. 2018-9

[6]
The hemodynamic response to interictal epileptic discharges localizes the seizure-onset zone.

Epilepsia. 2017-5

[7]
Negative MRI and a seizure onset zone close to eloquent areas in FCD type II: Application of MRg-LiTT after a SEEG re-evaluation in pediatric patients with a previous failed surgery.

Epilepsy Behav. 2024-4

[8]
Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre.

Brain. 2019-9-1

[9]
The UK experience of stereoelectroencephalography in children: An analysis of factors predicting the identification of a seizure-onset zone and subsequent seizure freedom.

Epilepsia. 2021-8

[10]
Correspondence between scalp-EEG and stereoelectroencephalography seizure-onset patterns in patients with MRI-negative drug-resistant focal epilepsy.

Epilepsia Open. 2024-4

引用本文的文献

[1]
Innovating pediatric epilepsy: transforming diagnosis and treatment with AI.

World J Pediatr. 2025-5-4

[2]
Voxel-based and surface-based cortical morphometric MRI applications for identifying the epileptogenic zone: A narrative review.

Epilepsia Open. 2025-4

[3]
Detection of Epileptogenic Focal Cortical Dysplasia Using Graph Neural Networks: A MELD Study.

JAMA Neurol. 2025-2-24

[4]
Focal cortical dysplasia lesion segmentation using multiscale transformer.

Insights Imaging. 2024-9-12

[5]
Artificial intelligence in epilepsy - applications and pathways to the clinic.

Nat Rev Neurol. 2024-6

[6]
Automatic Detection of Focal Cortical Dysplasia Using MRI: A Systematic Review.

Sensors (Basel). 2023-8-10

[7]
Interpretable surface-based detection of focal cortical dysplasias: a Multi-centre Epilepsy Lesion Detection study.

Brain. 2022-11-21

[8]
IDEAL approach to the evaluation of machine learning technology in epilepsy surgery: protocol for the MAST trial.

BMJ Surg Interv Health Technol. 2022-1-27

[9]
Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review.

Front Neurosci. 2021-6-22

[10]
Quantitative MRI susceptibility mapping reveals cortical signatures of changes in iron, calcium and zinc in malformations of cortical development in children with drug-resistant epilepsy.

Neuroimage. 2021-9

本文引用的文献

[1]
Progressive Cortical Thinning in Patients With Focal Epilepsy.

JAMA Neurol. 2019-10-1

[2]
Raincloud plots: a multi-platform tool for robust data visualization.

Wellcome Open Res. 2021-1-21

[3]
Risk analysis of hemorrhage in stereo-electroencephalography procedures.

Epilepsia. 2019-2-12

[4]
Clinical Value of Machine Learning in the Automated Detection of Focal Cortical Dysplasia Using Quantitative Multimodal Surface-Based Features.

Front Neurosci. 2019-1-11

[5]
Accuracy of robot-assisted versus optical frameless navigated stereoelectroencephalography electrode placement in children.

J Neurosurg Pediatr. 2019-3-1

[6]
Robot-assisted stereoelectroencephalography in children.

J Neurosurg Pediatr. 2019-3-1

[7]
The repertoire of seizure onset patterns in human focal epilepsies: Determinants and prognostic values.

Epilepsia. 2018-11-13

[8]
Multimodal computational neocortical anatomy in pediatric hippocampal sclerosis.

Ann Clin Transl Neurol. 2018-9-27

[9]
Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning.

Epilepsia. 2018-4-10

[10]
Topographic principles of cortical fluid-attenuated inversion recovery signal in temporal lobe epilepsy.

Epilepsia. 2018-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索