Zhang Di, Zong Fangrong, Zhang Qichen, Yue Yunhui, Zhang Fan, Zhao Kun, Wang Dawei, Wang Pan, Zhang Xi, Liu Yong
School of Airtificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
School of Airtificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
Med Image Anal. 2024 Jul;95:103165. doi: 10.1016/j.media.2024.103165. Epub 2024 Apr 6.
Diffusion magnetic resonance imaging (dMRI) tractography is a critical technique to map the brain's structural connectivity. Accurate segmentation of white matter, particularly the superficial white matter (SWM), is essential for neuroscience and clinical research. However, it is challenging to segment SWM due to the short adjacent gyri connection in a U-shaped pattern. In this work, we propose an Anatomically-guided Superficial Fiber Segmentation (Anat-SFSeg) framework to improve the performance on SWM segmentation. The framework consists of a unique fiber anatomical descriptor (named FiberAnatMap) and a deep learning network based on point-cloud data. The spatial coordinates of fibers represented as point clouds, as well as the anatomical features at both the individual and group levels, are fed into a neural network. The network is trained on Human Connectome Project (HCP) datasets and tested on the subjects with a range of cognitive impairment levels. One new metric named fiber anatomical region proportion (FARP), quantifies the ratio of fibers in the defined brain regions and enables the comparison with other methods. Another metric named anatomical region fiber count (ARFC), represents the average fiber number in each cluster for the assessment of inter-subject differences. The experimental results demonstrate that Anat-SFSeg achieves the highest accuracy on HCP datasets and exhibits great generalization on clinical datasets. Diffusion tensor metrics and ARFC show disorder severity associated alterations in patients with Alzheimer's disease (AD) and mild cognitive impairments (MCI). Correlations with cognitive grades show that these metrics are potential neuroimaging biomarkers for AD. Furthermore, Anat-SFSeg could be utilized to explore other neurodegenerative, neurodevelopmental or psychiatric disorders.
扩散磁共振成像(dMRI)纤维束成像技术是描绘大脑结构连接性的关键技术。准确分割白质,尤其是脑沟白质(SWM),对于神经科学和临床研究至关重要。然而,由于U形模式下相邻脑回连接较短,分割SWM具有挑战性。在这项工作中,我们提出了一种解剖学引导的脑沟纤维分割(Anat-SFSeg)框架,以提高SWM分割的性能。该框架由一个独特的纤维解剖描述符(名为FiberAnatMap)和一个基于点云数据的深度学习网络组成。表示为点云的纤维空间坐标,以及个体和群体水平的解剖特征,被输入到神经网络中。该网络在人类连接组计划(HCP)数据集上进行训练,并在具有一系列认知障碍水平的受试者上进行测试。一个名为纤维解剖区域比例(FARP)的新指标,量化了定义脑区中纤维的比例,并能够与其他方法进行比较。另一个名为解剖区域纤维计数(ARFC)的指标,表示每个簇中的平均纤维数量,用于评估个体间差异。实验结果表明,Anat-SFSeg在HCP数据集上实现了最高的准确率,并在临床数据集上表现出很好的泛化能力。扩散张量指标和ARFC显示了阿尔茨海默病(AD)和轻度认知障碍(MCI)患者与疾病严重程度相关的改变。与认知等级的相关性表明,这些指标是AD潜在的神经影像学生物标志物。此外,Anat-SFSeg可用于探索其他神经退行性、神经发育或精神疾病。
Hum Brain Mapp. 2024-2-1
IEEE Trans Med Imaging. 2024-3
Med Image Anal. 2020-10