Suppr超能文献

TractGeoNet:一种用于逐点分析束状微结构以预测语言评估表现的几何深度学习框架。

TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance.

作者信息

Chen Yuqian, Zekelman Leo R, Zhang Chaoyi, Xue Tengfei, Song Yang, Makris Nikos, Rathi Yogesh, Golby Alexandra J, Cai Weidong, Zhang Fan, O'Donnell Lauren J

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Computer Science, The University of Sydney, Sydney, NSW, Australia.

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.

出版信息

Med Image Anal. 2024 May;94:103120. doi: 10.1016/j.media.2024.103120. Epub 2024 Feb 23.

Abstract

We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize tissue microstructure and positional information from all points within a fiber tract without the need to average or bin data along the streamline as traditionally required by dMRI tractometry methods. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, to gain insight into the brain regions that contribute most strongly to the prediction results, we propose a Critical Region Localization algorithm. This algorithm identifies highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project Young Adult dataset. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models that have been applied to predict individual cognitive performance based on neuroimaging features. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. Within each tract, we localize critical regions whose microstructure and point information are highly and consistently predictive of language performance across different subjects and across multiple independently trained models. These critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.

摘要

我们提出了一种基于几何深度学习的框架TractGeoNet,用于利用扩散磁共振成像(dMRI)纤维束成像和相关的逐点组织微观结构测量进行回归分析。通过采用点云表示法,TractGeoNet可以直接利用纤维束内所有点的组织微观结构和位置信息,而无需像dMRI纤维束测量方法传统要求的那样,沿流线对数据进行平均或分箱处理。为了提高回归性能,我们提出了一种新颖的损失函数——配对暹罗回归损失,它鼓励模型专注于准确预测回归标签分数之间的相对差异,而不仅仅是它们的绝对值。此外,为了深入了解对预测结果贡献最大的脑区,我们提出了一种关键区域定位算法。该算法识别白质纤维束内对回归任务具有高度预测性的解剖区域。我们使用来自人类连接体项目青年成人数据集的806名受试者的20条联合白质纤维束数据集,通过预测两项语言神经心理学评估中的个体表现,来评估所提出方法的有效性。结果表明,与几种基于神经影像特征预测个体认知表现的流行回归模型相比,TractGeoNet具有卓越的预测性能。在所研究的20条纤维束中,我们发现左侧弓状束对两项所研究的语言表现评估具有最高的预测性。在每条纤维束内,我们定位关键区域,其微观结构和点信息在不同受试者和多个独立训练的模型中对语言表现具有高度且一致的预测性。这些关键区域广泛分布于两个半球和所有脑叶,包括大脑中被认为对语言功能重要的区域,如颞上和颞前区域、岛盖部以及中央前回。总体而言,TractGeoNet展示了几何深度学习在加强大脑白质纤维束研究以及将其结构与语言表现等人类特征联系起来方面的潜力。

相似文献

引用本文的文献

2
Diffusion MRI with Machine Learning.结合机器学习的扩散磁共振成像
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.

本文引用的文献

2
Brain-Aware Replacements for Supervised Contrastive Learning in Detection of Alzheimer's Disease.用于阿尔茨海默病检测中监督对比学习的脑感知替代方法
Med Image Comput Comput Assist Interv. 2022 Sep;13431:461-470. doi: 10.1007/978-3-031-16431-6_44. Epub 2022 Sep 15.
4
The challenges and prospects of brain-based prediction of behaviour.基于大脑的行为预测的挑战与展望。
Nat Hum Behav. 2023 Aug;7(8):1255-1264. doi: 10.1038/s41562-023-01670-1. Epub 2023 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验