Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
J Glob Antimicrob Resist. 2024 Jun;37:141-149. doi: 10.1016/j.jgar.2024.03.019. Epub 2024 Apr 10.
Antibiotic-resistant Klebsiella pneumoniae is a human pathogen of major global concern due to its ability to cause multiple severe diseases that are often difficult to treat therapeutically. This study aimed to investigate the resistome of local clinical K. pneumoniae isolates.
Herein, we used a whole genome sequencing approach and bioinformatics tools to reconstruct the resistome of 10 clinical K. pneumoniae isolates and one clinical isolate of the closely related Klebsiella quasipneumoniae obtained from patients from three major hospitals in Trinidad, West Indies.
The results of the study revealed the presence of a complex antibiotic-resistant armoury among the local isolates with multiple resistance mechanisms involving (i) inactivation of antibiotics, (ii) efflux pumps, (iii) antibiotic target alteration, protection, and replacement against antibiotics, and (iv) altered porin protein that reduced the permeability to antibiotics. Several resistance genes such as bla, bla, bla, bla, oqxA, sul1, tetD, aac(6')-Ib-cr5, aph(6)-Id, and fosA6, which are known to confer resistance to antibiotics used to treat K. pneumoniae infections. In most cases, the resistance genes were flanked by mobile elements, including insertion sequences and transposons, which facilitate the spread of these genetic features among related organisms.
This is the first comprehensive study to thoroughly investigate the resistome of clinical K. pneumoniae isolates and K. quasipneumoniae from Trinidad, West Indies. These findings suggest that monitoring K. pneumoniae and its genome-wide antibiotic resistance features in clinical strains would be of critical importance for guiding antibiotic stewardship programs and improving regional disease management systems for this pathogen.
耐抗生素肺炎克雷伯菌是一种对全球构成重大威胁的人类病原体,因为它能够引起多种严重疾病,这些疾病往往难以进行治疗。本研究旨在调查当地临床肺炎克雷伯菌分离株的耐药组。
在此,我们使用全基因组测序方法和生物信息学工具来重建来自西印度群岛特立尼达岛三家主要医院的 10 株临床肺炎克雷伯菌分离株和一株临床亲缘关系密切的肺炎克雷伯菌分离株的耐药组。
该研究的结果表明,当地分离株中存在复杂的抗生素耐药武器库,涉及多种耐药机制,包括(i)抗生素失活,(ii)外排泵,(iii)抗生素靶标改变、保护和替代,以及(iv)改变的孔蛋白,减少抗生素的通透性。许多耐药基因,如 blaCTX-M-15、blaTEM-1、blaDHA-1、blaOXA-48、oqxA、sul1、tetD、aac(6')-Ib-cr5、aph(6)-Id 和 fosA6,已知可赋予对用于治疗肺炎克雷伯菌感染的抗生素的耐药性。在大多数情况下,耐药基因被移动元件,包括插入序列和转座子所包围,这些元件促进了这些遗传特征在相关生物体中的传播。
这是首次全面研究特立尼达岛临床肺炎克雷伯菌和肺炎克雷伯菌的耐药组。这些发现表明,监测临床肺炎克雷伯菌及其全基因组抗生素耐药特征对于指导抗生素管理计划和改善该病原体的区域疾病管理系统至关重要。