Department of Ecosystem Science and Sustainability & Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523.
Department of Animal Science, University of California, Davis, Davis, CA 95616.
J Dairy Sci. 2024 Aug;107(8):5817-5832. doi: 10.3168/jds.2023-24412. Epub 2024 Apr 11.
Quantifying the effect of thermal stress on milk yields is essential to effectively manage present and future risks in dairy systems. Despite the existence of numerous heat indices designed to communicate stress thresholds, little information is available regarding the accuracy of different indices in estimating milk yield losses from both cold and heat stress at large spatiotemporal scales. To address this gap, we comparatively analyzed the performance of existing thermal indices in capturing US milk yield response to both cold and heat stress at the national scale. We selected 4 commonly used thermal indices: the temperature-humidity index (THI), black globe humidity index (BGHI), adjusted temperature-humidity index (THIadj), and comprehensive climate index (CCI). Using a statistical panel regression model with observational and reanalysis weather data from 1981 to 2020, we systematically compared the patterns of yield sensitivities and statistical performance of the 4 indices. We found that the US state-level milk yield variability was better explained by the THIadj and CCI, which combine the effects of temperature, humidity, wind, and solar radiation. Our analysis also reveals continuous and nonlinear responses of milk yields to a range of cold to heat stresses across all 4 indices. This implies that solely relying on fixed thresholds of these indices to model milk yield changes may be insufficient to capture cumulative thermal stress. Cold extremes reduced milk yields comparably to those affected by heat extremes on the national scale. Additionally, we found large spatial variability in milk yield sensitivities, implying further limitations to the use of fixed thresholds across locations. Moreover, we found decreased yield sensitivity to thermal stress in the most recent 2 decades, suggesting adaptive changes in management to reduce weather-related risks.
量化热应激对牛奶产量的影响对于有效管理当前和未来的奶牛系统风险至关重要。尽管有许多旨在传达应激阈值的热指数,但关于不同指数在大时空尺度上估计冷应激和热应激对牛奶产量损失的准确性的信息很少。为了解决这一差距,我们比较分析了现有的热指数在捕捉美国牛奶产量对冷应激和热应激的反应方面的性能,这些指数在全国范围内使用。我们选择了 4 种常用的热指数:温度-湿度指数(THI)、黑球湿度指数(BGHI)、调整温度-湿度指数(THIadj)和综合气候指数(CCI)。使用基于观测和再分析天气数据的统计面板回归模型,我们从 1981 年到 2020 年,系统比较了 4 种指数的产量敏感性模式和统计性能。我们发现,THIadj 和 CCI 更好地解释了美国州级牛奶产量的变异性,这两种指数结合了温度、湿度、风和太阳辐射的影响。我们的分析还揭示了牛奶产量对一系列冷应激和热应激的连续和非线性反应,这意味着仅依靠这些指数的固定阈值来模拟牛奶产量的变化可能不足以捕捉累积的热应激。在全国范围内,极端寒冷对牛奶产量的影响与极端炎热相当。此外,我们发现牛奶产量敏感性存在很大的空间变异性,这意味着在不同地点使用固定阈值存在进一步的局限性。此外,我们发现最近 20 年来,对热应激的产量敏感性降低,这表明管理方面做出了适应性改变,以降低与天气相关的风险。