Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
Nat Commun. 2024 Apr 12;15(1):3182. doi: 10.1038/s41467-024-47485-0.
Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.
亨廷顿病(HD)是一种显性神经疾病,由 HTT 外显子 1 的 CAG 重复扩展引起,该扩展会延长亨廷顿蛋白的多聚谷氨酰胺链。降低突变亨廷顿蛋白被提议用于治疗 HD,但遗传修饰因子表明体细胞 CAG 重复扩展是发病的驱动因素。我们发现 branaplam 和 risdiplam,这两种小分子剪接调节剂通过促进 HTT 假外显子的包含来降低亨廷顿蛋白,也能降低工程细胞模型中不稳定的 HTT 外显子 1 CAG 重复的扩展。靶向 CRISPR-Cas9 编辑表明,这种效果不是由于亨廷顿蛋白的降低,而是由于 PMS1 中的假外显子包含。PMS1 的纯合而非杂合失活也减少了 CAG 重复扩展,支持 PMS1 作为 HD 的遗传修饰因子和治疗干预的潜在靶点。尽管剪接调节提供了一种策略,但全基因组转录组学也强调了考虑靶标和非靶标位点的细胞类型特异性效应和多态性变异的重要性。