Wake Forest University, Department of Statistical Sciences, Winston-Salem, NC, USA.
Wake Forest University, Department of Engineering, Winston-Salem, NC, USA.
Sci Data. 2024 Apr 12;11(1):375. doi: 10.1038/s41597-024-03202-6.
We present a novel data set for drought in the continental US (CONUS) built to enable computationally efficient spatio-temporal statistical and probabilistic models of drought. We converted drought data obtained from the widely-used US Drought Monitor (USDM) from its native geo-referenced polygon format to a 0.5 degree regular grid. We merged known environmental drivers of drought, including those obtained from the North American Land Data Assimilation System (NLDAS-2), US Geological Survey (USGS) streamflow data, and National Oceanic and Atmospheric Administration (NOAA) teleconnections data. The resulting data set permits statistical and probabilistic modeling of drought with explicit spatial and/or temporal dependence. Such models could be used to forecast drought at short-range, seasonal to sub-seasonal, and inter-annual timescales with uncertainty, extending the reach and value of the current US Drought Outlook from the National Weather Service Climate Prediction Center. This novel data product provides the first common gridded dataset that includes critical variables used to inform hydrological and meteorological drought.
我们提出了一个美国大陆干旱的新数据集,旨在为干旱的计算高效时空统计和概率模型提供支持。我们将来自广泛使用的美国干旱监测(USDM)的干旱数据从其原生地理参考多边形格式转换为 0.5 度规则网格。我们合并了已知的干旱环境驱动因素,包括来自北美陆地数据同化系统(NLDAS-2)、美国地质调查局(USGS)的流量数据以及美国国家海洋和大气管理局(NOAA)的遥相关数据。由此产生的数据集允许对干旱进行具有明确空间和/或时间依赖性的统计和概率建模。这种模型可以用于在短期、季节到亚季节和年际范围内进行具有不确定性的干旱预测,从而扩展了美国国家气象局气候预测中心目前的美国干旱展望的范围和价值。这个新颖的数据产品提供了第一个包含用于告知水文和气象干旱的关键变量的通用网格化数据集。