Suppr超能文献

干旱与免疫力决定西尼罗河病毒流行强度及气候变化影响。

Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts.

作者信息

Paull Sara H, Horton Daniel E, Ashfaq Moetasim, Rastogi Deeksha, Kramer Laura D, Diffenbaugh Noah S, Kilpatrick A Marm

机构信息

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA

Research Applications Lab, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA.

出版信息

Proc Biol Sci. 2017 Feb 8;284(1848). doi: 10.1098/rspb.2016.2078.

Abstract

The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases.

摘要

全球气候变化对传染病的影响仍存在激烈争论,因为多种外在和内在驱动因素相互作用,以非线性方式影响传播动态。像西尼罗河病毒这样的广泛传播病原体的主要驱动因素,由于媒介和宿主生态的区域变异性,可能难以确定,过去的研究得出了不同的结果。在这里,我们利用国家和州尺度的分析来研究一系列大陆尺度西尼罗河病毒流行的气候和内在驱动因素,包括一个根据经验得出的温度与传播潜力之间的机制关系,该关系考虑了媒介的空间变异性。我们发现,干旱是西尼罗河病毒流行增加的主要气候驱动因素,而不是季节内或冬季温度,也不是独立的降水量。来自一个地区的局部尺度数据表明,干旱通过蚊子感染率的变化而非蚊子数量的变化增加了疫情。此外,区域疫情后人类获得的免疫力在许多州限制了后续传播。我们表明,在未来30年里,气候变化导致的干旱严重程度增加可能使西尼罗河病毒病例增加两倍,但仅在人类免疫力较低的地区。这些结果说明了干旱严重程度的变化如何改变媒介传播疾病的传播动态。

相似文献

2
Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model.
Int J Biometeorol. 2010 Sep;54(5):517-29. doi: 10.1007/s00484-010-0349-6. Epub 2010 Aug 5.
3
A continental risk assessment of West Nile virus under climate change.
Glob Chang Biol. 2014 Aug;20(8):2417-25. doi: 10.1111/gcb.12534. Epub 2014 Feb 27.
4
Regional variation of climatic influences on West Nile virus outbreaks in the United States.
Am J Trop Med Hyg. 2014 Oct;91(4):677-684. doi: 10.4269/ajtmh.14-0239. Epub 2014 Aug 4.
7
Climate change impacts on West Nile virus transmission in a global context.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665). doi: 10.1098/rstb.2013.0561.
8
Spatiotemporally Explicit Epidemic Model for West Nile Virus Outbreak in Germany: An Inversely Calibrated Approach.
J Epidemiol Glob Health. 2024 Sep;14(3):1052-1070. doi: 10.1007/s44197-024-00254-0. Epub 2024 Jul 4.
10
Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa.
Vector Borne Zoonotic Dis. 2012 Feb;12(2):117-25. doi: 10.1089/vbz.2011.0655. Epub 2011 Oct 13.

引用本文的文献

2
The paradoxical impact of drought on West Nile virus risk: insights from long-term ecological data.
Proc Biol Sci. 2025 Sep;292(2054):20251365. doi: 10.1098/rspb.2025.1365. Epub 2025 Sep 3.
3
The impact of climate change on transmission season length: West Nile virus as a case study.
bioRxiv. 2025 Aug 2:2025.08.01.667982. doi: 10.1101/2025.08.01.667982.
4
Extreme climate whiplash events drive divergent responses of mosquito-borne disease.
PNAS Nexus. 2025 Jul 21;4(8):pgaf223. doi: 10.1093/pnasnexus/pgaf223. eCollection 2025 Aug.
5
Integrating Wind Speed Into Climate-Based West Nile Virus Models: A Comparative Analysis in Two Distinct Regions.
Geohealth. 2025 Jul 5;9(7):e2024GH001320. doi: 10.1029/2024GH001320. eCollection 2025 Jul.
6
RNA sequencing analysis of viromes of and collected from NEON sites.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2403591122. doi: 10.1073/pnas.2403591122. Epub 2025 May 12.
8
Uncovering temperature sensitivity of West Nile virus transmission: Novel computational approaches to mosquito-pathogen trait responses.
PLoS Comput Biol. 2025 Mar 31;21(3):e1012866. doi: 10.1371/journal.pcbi.1012866. eCollection 2025 Mar.
9
Seasonal Bird Migration Could Explain Regional Synchronicity and Amplification in Human West Nile Virus Case Numbers.
Geohealth. 2025 Mar 20;9(3):e2024GH001194. doi: 10.1029/2024GH001194. eCollection 2025 Mar.
10

本文引用的文献

1
Host stress hormones alter vector feeding preferences, success, and productivity.
Proc Biol Sci. 2016 Aug 17;283(1836). doi: 10.1098/rspb.2016.1278.
2
Effect of Trapping Methods, Weather, and Landscape on Estimates of the Culex Vector Mosquito Abundance.
Environ Health Insights. 2016 Jun 22;10:93-103. doi: 10.4137/EHI.S33384. eCollection 2016.
3
Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes.
J Theor Biol. 2016 Jul 7;400:65-79. doi: 10.1016/j.jtbi.2016.04.008. Epub 2016 Apr 13.
4
Climate change projections of West Nile virus infections in Europe: implications for blood safety practices.
Environ Health. 2016 Mar 8;15 Suppl 1(Suppl 1):28. doi: 10.1186/s12940-016-0105-4.
5
Towards an early warning system for forecasting human west nile virus incidence.
PLoS Curr. 2014 May 30;6:ecurrents.outbreaks.f0b3978230599a56830ce30cb9ce0500. doi: 10.1371/currents.outbreaks.f0b3978230599a56830ce30cb9ce0500.
6
Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012.
Am J Trop Med Hyg. 2015 May;92(5):1013-22. doi: 10.4269/ajtmh.14-0737. Epub 2015 Mar 23.
7
Anthropogenic warming has increased drought risk in California.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3931-6. doi: 10.1073/pnas.1422385112. Epub 2015 Mar 2.
9
Evidence for co-evolution of West Nile Virus and house sparrows in North America.
PLoS Negl Trop Dis. 2014 Oct 30;8(10):e3262. doi: 10.1371/journal.pntd.0003262. eCollection 2014 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验