Suppr超能文献

用于牙周炎的智能唾液生物传感器:口腔氧化应激条件的体外模拟。

Intelligent salivary biosensors for periodontitis: in vitro simulation of oral oxidative stress conditions.

机构信息

Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.

Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Med Biol Eng Comput. 2024 Aug;62(8):2409-2434. doi: 10.1007/s11517-024-03077-0. Epub 2024 Apr 13.

Abstract

One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.

摘要

一种影响全球数百万人的最常见口腔疾病是牙周炎。通常,体液中的蛋白质被用作疾病的生物标志物。本研究专注于过氧化氢、脂多糖(LPS)和乳酸作为牙周炎氧化应激条件下的唾液非蛋白生物标志物。使用 Gamry 对人工唾液进行电化学分析,同时增加过氧化氢、bLPS 和乳酸浓度。进行电化学阻抗谱(EIS)和循环伏安法(CV)。从 EIS 数据中,为每个测试条件计算电容变化和 CV 图谱面积。过氧化氢组的 CV 面积减小,电容百分比变化增加,脂多糖组的 CV 面积减小,电容百分比变化减小,乳酸组的 CV 面积增加,电容百分比变化增加随着浓度的增加。这些数据显示了三种生物标志物独特的电化学特性组合。使用扫描电子显微镜 (SEM) 和能量色散光谱 (EDS) 观察电极表面的变化和传感器表面存在的元素组成数据也显示出独特的元素重量百分比趋势。使用过氧化氢、LPS 和乳酸电化学数据的机器学习模型被应用于预测牙周炎的风险水平。电化学生物传感器对过氧化氢、LPS 和乳酸的检测表明,这些分子有可能作为电化学生物标志物,并使用数据为 ML 驱动的预测工具进行牙周炎风险水平的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验