Suppr超能文献

监督式机器学习领域中的常见统计概念。

Common statistical concepts in the supervised Machine Learning arena.

作者信息

Rashidi Hooman H, Albahra Samer, Robertson Scott, Tran Nam K, Hu Bo

机构信息

Pathology and Laboratory Medicine Institute (PLMI), Cleveland Clinic, Cleveland, OH, United States.

PLMI's Center for Artificial Intelligence & Data Science, Cleveland Clinic, Cleveland, OH, United States.

出版信息

Front Oncol. 2023 Feb 14;13:1130229. doi: 10.3389/fonc.2023.1130229. eCollection 2023.

Abstract

One of the core elements of Machine Learning (ML) is statistics and its embedded foundational rules and without its appropriate integration, ML as we know would not exist. Various aspects of ML platforms are based on statistical rules and most notably the end results of the ML model performance cannot be objectively assessed without appropriate statistical measurements. The scope of statistics within the ML realm is rather broad and cannot be adequately covered in a single review article. Therefore, here we will mainly focus on the common statistical concepts that pertain to supervised ML (i.e. classification and regression) along with their interdependencies and certain limitations.

摘要

机器学习(ML)的核心要素之一是统计学及其内在的基本规则,没有这些规则的适当整合,我们所熟知的机器学习就不会存在。机器学习平台的各个方面都基于统计规则,最显著的是,如果没有适当的统计测量,就无法客观评估机器学习模型的性能。机器学习领域中的统计学范围相当广泛,一篇综述文章无法充分涵盖。因此,在这里我们将主要关注与监督式机器学习(即分类和回归)相关的常见统计概念,以及它们之间的相互依存关系和某些局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b62/9949554/dd51463bf112/fonc-13-1130229-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验