文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于量子神经网络的生物标志物发现:以 CTLA4 激活途径为例。

Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways.

机构信息

Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.

出版信息

BMC Bioinformatics. 2024 Apr 12;25(1):149. doi: 10.1186/s12859-024-05755-0.


DOI:10.1186/s12859-024-05755-0
PMID:38609844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11265126/
Abstract

BACKGROUND: Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD: We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS: We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION: The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .

摘要

背景:由于搜索空间巨大,生物标志物的发现是一项具有挑战性的任务。量子计算和量子人工智能(quantum AI)可用于解决从遗传数据中发现生物标志物的计算问题。

方法:我们提出了一种量子神经网络架构,用于发现输入激活途径的遗传生物标志物。最大相关性-最小冗余标准评分生物标志物候选集。由于可以在受限的硬件上提供神经解决方案,因此我们的模型具有经济性。

结果:我们在与 CTLA4 相关的四个激活途径(包括 1)CTLA4 激活独立途径、2)CTLA4-CD8A-CD8B 共激活途径、3)CTLA4-CD2 共激活途径和 4)CTLA4-CD2-CD48-CD53-CD58-CD84 共激活途径上证明了该概念的可行性。

结论:该模型表明与 CLTA4 相关途径的突变激活相关的新遗传生物标志物,包括 20 个基因:CLIC4、CPE、ETS2、FAM107A、GPR116、HYOU1、LCN2、MACF1、MT1G、NAPA、NDUFS5、PAK1、PFN1、PGAP3、PPMD8、RNF213、SLC25A3、UBA1 和 WLS。我们在 https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks 上开源了实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/3ca6c704391b/12859_2024_5755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/60f8bd1f831f/12859_2024_5755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/482b52de9c7f/12859_2024_5755_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/3ca6c704391b/12859_2024_5755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/60f8bd1f831f/12859_2024_5755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/482b52de9c7f/12859_2024_5755_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/11265126/3ca6c704391b/12859_2024_5755_Fig2_HTML.jpg

相似文献

[1]
Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways.

BMC Bioinformatics. 2024-4-12

[2]
Stereoscopic scalable quantum convolutional neural networks.

Neural Netw. 2023-8

[3]
Experimental quantum adversarial learning with programmable superconducting qubits.

Nat Comput Sci. 2022-11

[4]
Quantum computing for near-term applications in generative chemistry and drug discovery.

Drug Discov Today. 2023-8

[5]
From GPUs to AI and quantum: three waves of acceleration in bioinformatics.

Drug Discov Today. 2024-6

[6]
QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and methods for automated in silico bio-activity discovery for any compound of interest.

J Biomol Struct Dyn. 2023-3

[7]
Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry.

J Chem Inf Model. 2023-6-12

[8]
A new method of software vulnerability detection based on a quantum neural network.

Sci Rep. 2022-5-16

[9]
Quantum Neural Network Based Distinguisher on SPECK-32/64.

Sensors (Basel). 2023-6-18

[10]
Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics.

Mol Biotechnol. 2024-2

引用本文的文献

[1]
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.

Pharmaceutics. 2025-7-30

[2]
Quantum Oncology: The Applications of Quantum Computing in Cancer Research.

J Med Syst. 2025-7-23

[3]
Hybrid classical and quantum computing for enhanced glioma tumor classification using TCGA data.

Sci Rep. 2025-7-17

[4]
How quantum computing can enhance biomarker discovery.

Patterns (N Y). 2025-4-29

[5]
A Review of the Applications, Benefits, and Challenges of Generative AI for Sustainable Toxicology.

Curr Res Toxicol. 2025-4-21

[6]
Quantum machine learning: A comprehensive review of integrating AI with quantum computing for computational advancements.

MethodsX. 2025-4-18

本文引用的文献

[1]
IntelliGenes: a novel machine learning pipeline for biomarker discovery and predictive analysis using multi-genomic profiles.

Bioinformatics. 2023-12-1

[2]
Single cell dynamics of tumor specificity vs bystander activity in CD8 T cells define the diverse immune landscapes in colorectal cancer.

Cell Discov. 2023-11-15

[3]
Future Potential of Quantum Computing and Simulations in Biological Science.

Mol Biotechnol. 2024-9

[4]
Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics.

Mol Biotechnol. 2024-2

[5]
GPR116 receptor regulates the antitumor function of NK cells via Gαq/HIF1α/NF-κB signaling pathway as a potential immune checkpoint.

Cell Biosci. 2023-3-9

[6]
The Expression Pattern of Adhesion G Protein-Coupled Receptor F5 Is Related to Cell Adhesion and Metastatic Pathways in Colorectal Cancer-Comprehensive Study Based on In Silico Analysis.

Cells. 2022-12-1

[7]
Insights from incorporating quantum computing into drug design workflows.

Bioinformatics. 2023-1-1

[8]
Quantum computing algorithms: getting closer to critical problems in computational biology.

Brief Bioinform. 2022-11-19

[9]
Ten quick tips for biomarker discovery and validation analyses using machine learning.

PLoS Comput Biol. 2022-8-11

[10]
Landscape of somatic alterations in large-scale solid tumors from an Asian population.

Nat Commun. 2022-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索