Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.
BMC Bioinformatics. 2024 Apr 12;25(1):149. doi: 10.1186/s12859-024-05755-0.
BACKGROUND: Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD: We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS: We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION: The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
背景:由于搜索空间巨大,生物标志物的发现是一项具有挑战性的任务。量子计算和量子人工智能(quantum AI)可用于解决从遗传数据中发现生物标志物的计算问题。
方法:我们提出了一种量子神经网络架构,用于发现输入激活途径的遗传生物标志物。最大相关性-最小冗余标准评分生物标志物候选集。由于可以在受限的硬件上提供神经解决方案,因此我们的模型具有经济性。
结果:我们在与 CTLA4 相关的四个激活途径(包括 1)CTLA4 激活独立途径、2)CTLA4-CD8A-CD8B 共激活途径、3)CTLA4-CD2 共激活途径和 4)CTLA4-CD2-CD48-CD53-CD58-CD84 共激活途径上证明了该概念的可行性。
结论:该模型表明与 CLTA4 相关途径的突变激活相关的新遗传生物标志物,包括 20 个基因:CLIC4、CPE、ETS2、FAM107A、GPR116、HYOU1、LCN2、MACF1、MT1G、NAPA、NDUFS5、PAK1、PFN1、PGAP3、PPMD8、RNF213、SLC25A3、UBA1 和 WLS。我们在 https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks 上开源了实现。
BMC Bioinformatics. 2024-4-12
Neural Netw. 2023-8
Nat Comput Sci. 2022-11
Drug Discov Today. 2023-8
Drug Discov Today. 2024-6
J Chem Inf Model. 2023-6-12
Sensors (Basel). 2023-6-18
J Med Syst. 2025-7-23
Patterns (N Y). 2025-4-29
Curr Res Toxicol. 2025-4-21
Mol Biotechnol. 2024-9
Bioinformatics. 2023-1-1
Brief Bioinform. 2022-11-19
PLoS Comput Biol. 2022-8-11