量子计算如何助力生物标志物发现。
How quantum computing can enhance biomarker discovery.
作者信息
Flöther Frederik F, Blankenberg Daniel, Demidik Maria, Jansen Karl, Krishnakumar Raga, Krishnakumar Rajiv, Laanait Nouamane, Parida Laxmi, Saab Carl Y, Utro Filippo
机构信息
QuantumBasel, Schorenweg 44b, Arlesheim 4144, Switzerland.
Center for Quantum Computing and Quantum Coherence (QC2), University of Basel, Petersplatz 1, Basel 4001, Switzerland.
出版信息
Patterns (N Y). 2025 Apr 29;6(6):101236. doi: 10.1016/j.patter.2025.101236. eCollection 2025 Jun 13.
Biomarkers play a central role in medicine's gradual progress toward proactive, personalized precision diagnostics and interventions. However, finding biomarkers that provide very early indicators of a change in health status, for example, for multifactorial diseases, has been challenging. The discovery of such biomarkers stands to benefit significantly from advanced information processing and means to detect complex correlations, which quantum computing offers. In this perspective, quantum algorithms, particularly in machine learning, are mapped to key applications in biomarker discovery. The opportunities and challenges associated with the algorithms and applications are discussed. The analysis is structured according to different data types-multidimensional, time series, and erroneous data-and covers key data modalities in healthcare-electronic health records, omics, and medical images. An outlook is provided concerning open research challenges.
生物标志物在医学朝着主动、个性化精准诊断和干预的逐步发展过程中发挥着核心作用。然而,找到能够提供健康状况变化早期指标的生物标志物,例如针对多因素疾病的生物标志物,一直具有挑战性。发现此类生物标志物将从量子计算所提供的先进信息处理和检测复杂相关性的手段中显著受益。从这个角度来看,量子算法,特别是机器学习中的量子算法,被映射到生物标志物发现的关键应用中。讨论了与这些算法和应用相关的机遇与挑战。分析是根据不同的数据类型——多维数据、时间序列数据和错误数据——进行构建的,并涵盖了医疗保健中的关键数据模式——电子健康记录、组学和医学图像。还展望了开放的研究挑战。