预测逃避先天免疫系统的病毒蛋白:一种基于机器学习的免疫信息学工具。
Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool.
机构信息
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco, Chile.
出版信息
BMC Bioinformatics. 2024 Nov 9;25(1):351. doi: 10.1186/s12859-024-05972-7.
Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus-host interactions. Leveraging advancements in computational biology, we present VirusHound-II, a novel tool that utilizes machine learning techniques to predict viral proteins evading the innate immune response with high accuracy. We evaluated a comprehensive range of machine learning models, including ensemble methods, neural networks, and support vector machines. Using a dataset of 1337 viral proteins known to evade the innate immune response (VPEINRs) and an equal number of non-VPEINRs, we employed pseudo amino acid composition as the molecular descriptor. Our methodology involved a tenfold cross-validation strategy on 80% of the data for training, followed by testing on an independent dataset comprising the remaining 20%. The random forest model demonstrated superior performance metrics, achieving 0.9290 accuracy, 0.9283 F1 score, 0.9354 precision, and 0.9213 sensitivity in the independent testing phase. These results establish VirusHound-II as an advancement in computational virology, accessible via a user-friendly web application. We anticipate that VirusHound-II will be a crucial resource for researchers, enabling the rapid and reliable prediction of viral proteins evading the innate immune response. This tool has the potential to accelerate the identification of therapeutic targets and enhance our understanding of viral evasion mechanisms, contributing to the development of more effective antiviral strategies and advancing our knowledge of virus-host interactions.
逃避宿主先天免疫反应的病毒蛋白在发病机制中起着至关重要的作用,对病毒感染和潜在的治疗策略有重大影响。由于病毒-宿主相互作用的复杂性,通过传统方法识别这些蛋白既具有挑战性又耗时。利用计算生物学的进步,我们提出了 VirusHound-II,这是一种利用机器学习技术预测逃避先天免疫反应的病毒蛋白的新工具,具有很高的准确性。我们评估了一系列广泛的机器学习模型,包括集成方法、神经网络和支持向量机。我们使用了一个由 1337 种已知逃避先天免疫反应的病毒蛋白(VPEINRs)和等量的非-VPEINRs 组成的数据集,使用拟氨基酸组成作为分子描述符。我们的方法包括在 80%的数据上进行 10 倍交叉验证策略,用于训练,然后在包含其余 20%数据的独立数据集上进行测试。随机森林模型表现出优越的性能指标,在独立测试阶段的准确率为 0.9290、F1 得分为 0.9283、精度为 0.9354、灵敏度为 0.9213。这些结果确立了 VirusHound-II 在计算病毒学方面的进步,可通过用户友好的网络应用程序访问。我们预计 VirusHound-II 将成为研究人员的重要资源,使快速可靠地预测逃避先天免疫反应的病毒蛋白成为可能。该工具具有加速鉴定治疗靶点和增强我们对病毒逃避机制的理解的潜力,有助于开发更有效的抗病毒策略,并增进我们对病毒-宿主相互作用的认识。