Suppr超能文献

YPR-SLAM:一种用于动态场景的结合目标检测与几何约束的同步定位与地图构建系统。

YPR-SLAM: A SLAM System Combining Object Detection and Geometric Constraints for Dynamic Scenes.

作者信息

Kan Xukang, Shi Gefei, Yang Xuerong, Hu Xinwei

机构信息

School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, China.

Shenzhen Key Laboratory of Intelligent Microsatellite Constellation (Sun Yat-sen University), Sun Yat-sen University, Shenzhen 518107, China.

出版信息

Sensors (Basel). 2024 Oct 12;24(20):6576. doi: 10.3390/s24206576.

Abstract

Traditional SLAM systems assume a static environment, but moving objects break this ideal assumption. In the real world, moving objects can greatly influence the precision of image matching and camera pose estimation. In order to solve these problems, the YPR-SLAM system is proposed. First of all, the system includes a lightweight YOLOv5 detection network for detecting both dynamic and static objects, which provides pre-dynamic object information to the SLAM system. Secondly, utilizing the prior information of dynamic targets and the depth image, a method of geometric constraint for removing motion feature points from the depth image is proposed. The Depth-PROSAC algorithm is used to differentiate the dynamic and static feature points so that dynamic feature points can be removed. At last, the dense cloud map is constructed by the static feature points. The YPR-SLAM system is an efficient combination of object detection and geometry constraint in a tightly coupled way, eliminating motion feature points and minimizing their adverse effects on SLAM systems. The performance of the YPR-SLAM was assessed on the public TUM RGB-D dataset, and it was found that YPR-SLAM was suitable for dynamic situations.

摘要

传统的同步定位与地图构建(SLAM)系统假定环境是静态的,但移动物体打破了这一理想假设。在现实世界中,移动物体可能会极大地影响图像匹配和相机位姿估计的精度。为了解决这些问题,提出了YPR-SLAM系统。首先,该系统包括一个轻量级的YOLOv5检测网络,用于检测动态和静态物体,它为SLAM系统提供动态物体的先验信息。其次,利用动态目标的先验信息和深度图像,提出了一种从深度图像中去除运动特征点的几何约束方法。采用深度渐进抽样一致性(Depth-PROSAC)算法区分动态和静态特征点,从而去除动态特征点。最后,由静态特征点构建稠密点云地图。YPR-SLAM系统以紧密耦合的方式将目标检测和几何约束进行了有效结合,消除了运动特征点,并将其对SLAM系统的不利影响降至最低。在公开的TUM RGB-D数据集上评估了YPR-SLAM的性能,发现YPR-SLAM适用于动态场景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验