Xiang Wenhao, Shen Jianjun, Zhang Li, Zhang Yu
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
School of Astronautics, Beihang University, Beijing 102206, China.
Sensors (Basel). 2024 Apr 2;24(7):2271. doi: 10.3390/s24072271.
The objective of infrared and visual image fusion is to amalgamate the salient and complementary features of the infrared and visual images into a singular informative image. To accomplish this, we introduce a novel local-extrema-driven image filter designed to effectively smooth images by reconstructing pixel intensities based on their local extrema. This filter is iteratively applied to the input infrared and visual images, extracting multiple scales of bright and dark feature maps from the differences between continuously filtered images. Subsequently, the bright and dark feature maps of the infrared and visual images at each scale are fused using elementwise-maximum and elementwise-minimum strategies, respectively. The two base images, representing the final-scale smoothed images of the infrared and visual images, are fused using a novel structural similarity- and intensity-based strategy. Finally, our fusion image can be straightforwardly produced by combining the fused bright feature map, dark feature map, and base image together. Rigorous experimentation conducted on the widely used TNO dataset underscores the superiority of our method in fusing infrared and visual images. Our approach consistently performs on par or surpasses eleven state-of-the-art image-fusion methods, showcasing compelling results in both qualitative and quantitative assessments.
红外与视觉图像融合的目标是将红外图像和视觉图像的显著且互补的特征融合成一幅单一的信息丰富的图像。为实现这一目标,我们引入了一种新颖的局部极值驱动图像滤波器,该滤波器旨在通过基于像素的局部极值重建像素强度来有效地平滑图像。此滤波器被迭代地应用于输入的红外图像和视觉图像,从连续滤波后的图像之间的差异中提取多个尺度的亮特征图和暗特征图。随后,分别使用逐元素最大值和逐元素最小值策略对每个尺度下的红外图像和视觉图像的亮特征图和暗特征图进行融合。代表红外图像和视觉图像最终尺度平滑图像的两个基础图像,使用一种新颖的基于结构相似性和强度的策略进行融合。最后,通过将融合后的亮特征图、暗特征图和基础图像组合在一起,可直接生成我们的融合图像。在广泛使用的TNO数据集上进行的严格实验强调了我们的方法在融合红外图像和视觉图像方面的优越性。我们的方法始终与十一种先进的图像融合方法表现相当或更优,在定性和定量评估中均展现出令人信服的结果。