Wang Kunpeng, Zheng Mingyao, Wei Hongyan, Qi Guanqiu, Li Yuanyuan
School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621010, China.
Sensors (Basel). 2020 Apr 11;20(8):2169. doi: 10.3390/s20082169.
Medical image fusion techniques can fuse medical images from different morphologies to make the medical diagnosis more reliable and accurate, which play an increasingly important role in many clinical applications. To obtain a fused image with high visual quality and clear structure details, this paper proposes a convolutional neural network (CNN) based medical image fusion algorithm. The proposed algorithm uses the trained Siamese convolutional network to fuse the pixel activity information of source images to realize the generation of weight map. Meanwhile, a contrast pyramid is implemented to decompose the source image. According to different spatial frequency bands and a weighted fusion operator, source images are integrated. The results of comparative experiments show that the proposed fusion algorithm can effectively preserve the detailed structure information of source images and achieve good human visual effects.
医学图像融合技术可以融合来自不同形态的医学图像,使医学诊断更加可靠和准确,这在许多临床应用中发挥着越来越重要的作用。为了获得具有高视觉质量和清晰结构细节的融合图像,本文提出了一种基于卷积神经网络(CNN)的医学图像融合算法。该算法利用训练好的连体卷积网络融合源图像的像素活动信息,实现权重图的生成。同时,实现了对比度金字塔对源图像进行分解。根据不同的空间频率带和加权融合算子,对源图像进行整合。对比实验结果表明,所提出的融合算法能够有效保留源图像的详细结构信息,取得良好的视觉效果。