Cabral Thales W, Neto Fernando B, de Lima Eduardo R, Fraidenraich Gustavo, Meloni Luís G P
Department of Communications, School of Electrical and Computer Engineering, University of Campinas, Campinas 13083-852, Brazil.
Companhia Paranaense de Energia, Curitiba 81200-240, Brazil.
Sensors (Basel). 2024 Apr 2;24(7):2274. doi: 10.3390/s24072274.
Efficient energy management in residential environments is a constant challenge, in which Home Energy Management Systems (HEMS) play an essential role in optimizing consumption. Load recognition allows the identification of active appliances, providing robustness to the HEMS. The precise identification of household appliances is an area not completely explored. Gaps like improving classification performance through techniques dedicated to separability between classes and models that achieve enhanced reliability remain open. This work improves several aspects of load recognition in HEMS applications. In this research, we adopt Neighborhood Component Analysis (NCA) to extract relevant characteristics from the data, seeking the separability between classes. We also employ the Regularized Extreme Learning Machine (RELM) to identify household appliances. This pioneering approach achieves performance improvements, presenting higher accuracy and weighted F1-Score values-97.24% and 97.14%, respectively-surpassing state-of-the-art methods and enhanced reliability according to the Kappa index, i.e., 0.9388, outperforming competing classifiers. Such evidence highlights the promising potential of Machine Learning (ML) techniques, specifically NCA and RELM, to contribute to load recognition and energy management in residential environments.
住宅环境中的高效能源管理一直是一项挑战,家庭能源管理系统(HEMS)在优化能耗方面发挥着至关重要的作用。负载识别有助于识别正在使用的电器,增强HEMS的稳定性。家用电器的精确识别是一个尚未得到充分探索的领域。诸如通过致力于类间可分离性的技术来提高分类性能以及实现更高可靠性的模型等方面仍存在不足。这项工作改进了HEMS应用中负载识别的多个方面。在本研究中,我们采用邻域成分分析(NCA)从数据中提取相关特征,以寻求类间可分离性。我们还使用正则化极限学习机(RELM)来识别家用电器。这种开创性的方法实现了性能提升,分别呈现出更高的准确率和加权F1分数值,即97.24%和97.14%,超越了现有技术方法,并且根据卡帕指数(Kappa index),即0.9388,显示出更高的可靠性,优于竞争分类器。这些证据凸显了机器学习(ML)技术,特别是NCA和RELM,在住宅环境中的负载识别和能源管理方面的巨大潜力。