Suppr超能文献

基于深度学习和图像分析的自动化路面状况指数评估:一种端到端方法。

Automated Pavement Condition Index Assessment with Deep Learning and Image Analysis: An End-to-End Approach.

作者信息

Ibragimov Eldor, Kim Yongsoo, Lee Jung Hee, Cho Junsang, Lee Jong-Jae

机构信息

SISTech Co., Ltd., Seoul 05006, Republic of Korea.

Department of Artificial Intelligence, Ajou University, Suwon-si 16499, Republic of Korea.

出版信息

Sensors (Basel). 2024 Apr 6;24(7):2333. doi: 10.3390/s24072333.

Abstract

The degradation of road pavements due to environmental factors is a pressing issue in infrastructure maintenance, necessitating precise identification of pavement distresses. The pavement condition index (PCI) serves as a critical metric for evaluating pavement conditions, essential for effective budget allocation and performance tracking. Traditional manual PCI assessment methods are limited by labor intensity, subjectivity, and susceptibility to human error. Addressing these challenges, this paper presents a novel, end-to-end automated method for PCI calculation, integrating deep learning and image processing technologies. The first stage employs a deep learning algorithm for accurate detection of pavement cracks, followed by the application of a segmentation-based skeleton algorithm in image processing to estimate crack width precisely. This integrated approach enhances the assessment process, providing a more comprehensive evaluation of pavement integrity. The validation results demonstrate a 95% accuracy in crack detection and 90% accuracy in crack width estimation. Leveraging these results, the automated PCI rating is achieved, aligned with standards, showcasing significant improvements in the efficiency and reliability of PCI evaluations. This method offers advancements in pavement maintenance strategies and potential applications in broader road infrastructure management.

摘要

由于环境因素导致的道路路面退化是基础设施维护中的一个紧迫问题,需要精确识别路面病害。路面状况指数(PCI)是评估路面状况的关键指标,对有效的预算分配和性能跟踪至关重要。传统的手动PCI评估方法受到劳动强度、主观性和人为误差易感性的限制。为应对这些挑战,本文提出了一种新颖的、端到端的PCI计算自动化方法,将深度学习和图像处理技术相结合。第一阶段采用深度学习算法精确检测路面裂缝,随后在图像处理中应用基于分割的骨架算法精确估计裂缝宽度。这种集成方法改进了评估过程,对路面完整性提供了更全面的评价。验证结果表明,裂缝检测准确率为95%,裂缝宽度估计准确率为90%。利用这些结果,实现了符合标准的自动化PCI评级,展示了PCI评估在效率和可靠性方面的显著提高。该方法为路面维护策略带来了进步,并在更广泛的道路基础设施管理中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf80/11014408/5915efd37e74/sensors-24-02333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验