Suppr超能文献

基于Voronoi镶嵌的新型细胞绝缘屏障——内部结构优化对热性能的影响

Innovative Cellular Insulation Barrier on the Basis of Voronoi Tessellation-Influence of Internal Structure Optimization on Thermal Performance.

作者信息

Anwajler Beata, Zielińska Sara, Witek-Krowiak Anna

机构信息

Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland.

Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland.

出版信息

Materials (Basel). 2024 Mar 29;17(7):1578. doi: 10.3390/ma17071578.

Abstract

The optimization of structure and thermal properties in 3D-printed insulation materials remains an underexplored area in the literature. This study aims to address this gap by investigating the impact of 3D printing on the thermal properties of manufactured cellular composites. The materials studied were closed-cell foams with a complex cell structure based on the Voronoi cell model, manufactured using incremental technology (3D printing). The influence of the cellular structure of the composite, the type of material used, and the number of layers in the composite structure on its thermal properties, i.e., thermal conductivity coefficient, thermal resistance, and coefficient of heat transfer, was analyzed. Samples of different types of thermosetting resins, characterized by different values of emissivity coefficient, were analyzed. It was shown that both the type of material, the number of layers of the composite, and the number of pores in its structure significantly affect its thermal insulating properties. Thermal conductivity and permeability depended on the number of layers and decreased up to 30% as the number of layers increased from one to four, while thermal resistance increased to 35%. The results indicate that material structure is key in regulating thermal conduction. Controlling the number of cells in a given volume of composite (and thus the size of the air cells) and the number of layers in the composite can be an effective tool in designing materials with high insulation performance. Among the prototype composites produced, the best thermal performance was that of the metalized four-layer cellular composites (λ = 0.035 ± 0.002 W/m·K, R = 1.15 ± 0.02 K·m/W, U = 0.76 ± 0.01 W/m·K).

摘要

3D打印隔热材料的结构和热性能优化在文献中仍是一个未充分探索的领域。本研究旨在通过研究3D打印对制造的多孔复合材料热性能的影响来填补这一空白。所研究的材料是基于Voronoi元胞模型、具有复杂胞体结构的闭孔泡沫材料,采用增量技术(3D打印)制造。分析了复合材料的胞体结构、所用材料类型以及复合结构中的层数对其热性能(即导热系数、热阻和传热系数)的影响。对具有不同发射率系数值的不同类型热固性树脂样品进行了分析。结果表明,材料类型、复合材料层数及其结构中的孔隙数量均对其隔热性能有显著影响。导热系数和渗透率取决于层数,层数从一层增加到四层时,导热系数和渗透率降低了30%,而热阻增加到35%。结果表明,材料结构是调节热传导的关键。控制给定体积复合材料中的泡孔数量(进而控制气室大小)以及复合材料中的层数,可能是设计具有高隔热性能材料的有效手段。在所制备的原型复合材料中,热性能最佳的是金属化四层多孔复合材料(λ = 0.035 ± 0.002 W/m·K,R = 1.15 ± 0.02 K·m/W,U = 0.76 ± 0.01 W/m·K)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验