Suppr超能文献

构建用于结肠癌预后和药物治疗预测的多基因风险模型。

The Construction of a Multi-Gene Risk Model for Colon Cancer Prognosis and Drug Treatments Prediction.

机构信息

Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.

出版信息

Int J Mol Sci. 2024 Apr 2;25(7):3954. doi: 10.3390/ijms25073954.

Abstract

In clinical practice, colon cancer is a prevalent malignant tumor of the digestive system, characterized by a complex and progressive process involving multiple genes and molecular pathways. Historically, research efforts have primarily focused on investigating individual genes; however, our current study aims to explore the collective impact of multiple genes on colon cancer and to identify potential therapeutic targets associated with these genes. For this research, we acquired the gene expression profiles and RNA sequencing data of colon cancer from TCGA. Subsequently, we conducted differential gene expression analysis using R, followed by GO and KEGG pathway enrichment analyses. To construct a protein-protein interaction (PPI) network, we selected survival-related genes using the log-rank test and single-factor Cox regression analysis. Additionally, we performed LASSO regression analysis, immune infiltration analysis, mutation analysis, and cMAP analysis, as well as an investigation into ferroptosis. Our differential expression and survival analyses identified 47 hub genes, and subsequent LASSO regression analysis refined the focus to 23 key genes. These genes are closely linked to cancer metastasis, proliferation, apoptosis, cell cycle regulation, signal transduction, cancer microenvironment, immunotherapy, and neurodevelopment. Overall, the hub genes discovered in our study are pivotal in colon cancer and are anticipated to serve as important biological markers for the diagnosis and treatment of the disease.

摘要

在临床实践中,结肠癌是一种常见的消化系统恶性肿瘤,其特征是涉及多个基因和分子途径的复杂和进行性过程。历史上,研究工作主要集中在研究单个基因上;然而,我们目前的研究旨在探讨多个基因对结肠癌的综合影响,并确定与这些基因相关的潜在治疗靶点。为此,我们从 TCGA 获得了结肠癌的基因表达谱和 RNA 测序数据。然后,我们使用 R 进行差异基因表达分析,接着进行 GO 和 KEGG 通路富集分析。为了构建蛋白质-蛋白质相互作用(PPI)网络,我们使用对数秩检验和单因素 Cox 回归分析选择了与生存相关的基因。此外,我们还进行了 LASSO 回归分析、免疫浸润分析、突变分析和 cMAP 分析,以及对铁死亡的研究。我们的差异表达和生存分析确定了 47 个枢纽基因,随后的 LASSO 回归分析将重点缩小到 23 个关键基因。这些基因与癌症转移、增殖、凋亡、细胞周期调控、信号转导、癌症微环境、免疫治疗和神经发育密切相关。总之,我们研究中发现的枢纽基因在结肠癌中至关重要,预计将成为该疾病诊断和治疗的重要生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dd9/11011764/28865f2d3a9b/ijms-25-03954-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验