Suppr超能文献

NSPlex:一种使用商业 STR 试剂盒分析非特异性扩增峰的有效方法。

NSPlex: an efficient method to analyze non-specific peaks amplified using commercial STR kits.

机构信息

DNA Center Kashiwa Branch, Criminal Identification Division, National Police Agency, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.

Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.

出版信息

Int J Legal Med. 2024 Sep;138(5):1781-1785. doi: 10.1007/s00414-024-03234-y. Epub 2024 Apr 13.

Abstract

Commercial short tandem repeat (STR) kits exclusively contain human-specific primers; however, various non-human organisms with high homology to the STR kit's primer sequences can cause cross-reactivity. Owing to the proprietary nature of the primers in STR kits, the origins and sequences of most non-specific peaks (NSPs) remain unclear. Such NSPs can complicate data interpretation between the casework and reference samples; thus, we developed "NSPlex", an efficient method to discover the biological origins of NSPs. We used leftover STR kit amplicons after capillary electrophoresis and performed advanced bioinformatics analyses using next-generation sequencing followed by BLAST nucleotide searches. Using our method, we could successfully identify NSP generated from PCR amplicons of a sample mixture of human DNA and DNA extracted from matcha powder (finely ground powder of green tea leaves and previously known as a potential source of NSP). Our results showed our method is efficient for NSP analysis without the need for the primer information as in commercial STR kits.

摘要

商业短串联重复(STR)试剂盒专门包含人类特异性引物;然而,与 STR 试剂盒引物序列具有高度同源性的各种非人类生物体可能会导致交叉反应。由于 STR 试剂盒中引物的专有性质,大多数非特异性峰(NSP)的来源和序列仍然不清楚。这种 NSP 会使案件样本和参考样本之间的数据分析变得复杂;因此,我们开发了“NSPlex”,这是一种发现 NSP 生物学来源的有效方法。我们使用毛细管电泳后剩余的 STR 试剂盒扩增子,并使用下一代测序进行高级生物信息学分析,然后进行 BLAST 核苷酸搜索。使用我们的方法,我们可以成功地识别来自人 DNA 和从抹茶粉(绿茶叶片的细磨粉,以前被认为是 NSP 的潜在来源)中提取的 DNA 的混合物的 PCR 扩增子产生的 NSP。我们的结果表明,我们的方法无需商业 STR 试剂盒中的引物信息即可有效地进行 NSP 分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验