Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
Int J Biol Macromol. 2024 May;268(Pt 1):131558. doi: 10.1016/j.ijbiomac.2024.131558. Epub 2024 Apr 16.
Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min (R = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.
由有毒化合物引起的水污染已经成为全球最严重的挑战之一。基于生物质的纳米复合材料为传统材料提供了一种可持续和可再生的替代方案。在本研究中,制备了薄荷和醋酸纤维素的纳米复合材料(Mint-CA),并将其用作 Cu 纳米粒子(CuNPs)和 Ag 纳米粒子(AgNPs)的支撑材料。通过比较它们在各种染料溶液还原反应中的性能,评估了 CuNPs@mint-CA 和 AgNPs@mint-CA 的选择性。AgNPs@mint-CA 表现出优异的催化性能,对甲基橙(MO)的去除率达到 95.2%,而 CuNPs@mint-CA 仅为 68%。MO 的吸收光谱在 464nm 处显示出明显的峰值。AgNPs@mint-CA 还原 MO 的反应遵循拟一级动力学,速率常数 k=0.0063min(R=0.928)。在以下条件下实现了 MO 的最高去除率:催化剂重量为 40mg,初始 MO 浓度为 0.07mM,加入 0.5mL0.1M NaBH,温度为 25°C。此外,AgNPs@mint-CA 催化剂即使在经过五次使用循环后仍表现出出色的还原性能,这突出了其高效去除 MO 的潜力。