Suppr超能文献

评估基于生成式预训练转换器的膳食推荐系统在管理血液透析患者钾摄入方面的有效性。

Evaluating the Effectiveness of a Generative Pretrained Transformer-Based Dietary Recommendation System in Managing Potassium Intake for Hemodialysis Patients.

机构信息

Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, Ningbo Hangzhou Bay Hospital, China; Molecular Cell Lab for Kidney Disease, Shanghai, China; Shanghai Peritoneal Dialysis Research Center, Shanghai, China; Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Molecular Cell Lab for Kidney Disease, Shanghai, China; Shanghai Peritoneal Dialysis Research Center, Shanghai, China; Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

J Ren Nutr. 2024 Nov;34(6):539-545. doi: 10.1053/j.jrn.2024.04.001. Epub 2024 Apr 12.

Abstract

OBJECTIVE

Despite adequate dialysis, the prevalence of hyperkalemia in Chinese hemodialysis (HD) patients remains elevated. This study aims to evaluate the effectiveness of a dietary recommendation system driven by generative pretrained transformers (GPTs) in managing potassium levels in HD patients.

METHODS

We implemented a bespoke dietary guidance tool utilizing GPT technology. Patients undergoing HD at our center were enrolled in the study from October 2023 to November 2023. The intervention comprised of two distinct phases. Initially, patients were provided with conventional dietary education focused on potassium management in HD. Subsequently, in the second phase, they were introduced to a novel GPT-based dietary guidance tool. This artificial intelligence (AI)-powered tool offered real-time insights into the potassium content of various foods and personalized dietary suggestions. The effectiveness of the AI tool was evaluated by assessing the precision of its dietary recommendations. Additionally, we compared predialysis serum potassium levels and the proportion of patients with hyperkalemia among patients before and after the implementation of the GPT-based dietary guidance system.

RESULTS

In our analysis of 324 food photographs uploaded by 88 HD patients, the GPTs system evaluated potassium content with an overall accuracy of 65%. Notably, the accuracy was higher for high-potassium foods at 85%, while it stood at 48% for low-potassium foods. Furthermore, the study examined the effect of GPT-based dietary advice on patients' serum potassium levels, revealing a significant reduction in those adhering to GPTs recommendations compared to recipients of traditional dietary guidance (4.57 ± 0.76 mmol/L vs. 4.84 ± 0.94 mmol/L, P = .004). Importantly, compared to traditional dietary education, dietary education based on the GPTs tool reduced the proportion of hyperkalemia in HD patients from 39.8% to 25% (P = .036).

CONCLUSION

These results underscore the promising role of AI in improving dietary management for HD patients. Nonetheless, the study also points out the need for enhanced accuracy in identifying low potassium foods. It paves the way for future research, suggesting the incorporation of extensive nutritional databases and the assessment of long-term outcomes. This could potentially lead to more refined and effective dietary management strategies in HD care.

摘要

目的

尽管透析充分,但中国血液透析(HD)患者的高钾血症患病率仍然居高不下。本研究旨在评估基于生成式预训练转换器(GPT)的饮食推荐系统在管理 HD 患者血钾水平方面的有效性。

方法

我们使用 GPT 技术开发了一种定制的饮食指导工具。2023 年 10 月至 11 月,在我院接受 HD 治疗的患者参与了这项研究。该干预措施包括两个不同阶段。首先,患者接受了以 HD 中钾管理为重点的常规饮食教育。随后,在第二阶段,他们开始使用一种新的基于 GPT 的饮食指导工具。该人工智能(AI)工具可以实时提供各种食物的钾含量信息,并提供个性化的饮食建议。通过评估其饮食建议的准确性,评估了 AI 工具的有效性。此外,我们比较了患者在实施基于 GPT 的饮食指导系统前后的透析前血清钾水平和高钾血症患者的比例。

结果

在对 88 名 HD 患者上传的 324 张食物照片进行分析时,GPTs 系统评估钾含量的总体准确率为 65%。值得注意的是,高钾食物的准确率为 85%,而低钾食物的准确率为 48%。此外,该研究还考察了基于 GPT 的饮食建议对患者血清钾水平的影响,结果显示,与接受传统饮食指导的患者相比,遵循 GPTs 建议的患者血清钾水平显著降低(4.57±0.76mmol/L 比 4.84±0.94mmol/L,P=0.004)。重要的是,与传统饮食教育相比,基于 GPTs 工具的饮食教育将 HD 患者的高钾血症比例从 39.8%降至 25%(P=0.036)。

结论

这些结果突出了 AI 在改善 HD 患者饮食管理方面的潜力。然而,该研究还指出,需要提高识别低钾食物的准确性。这为未来的研究铺平了道路,建议纳入更广泛的营养数据库并评估长期结果。这可能会导致 HD 护理中更精细、更有效的饮食管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验