Suppr超能文献

利用检索增强大语言模型结合中医药食同源进行饮食推荐:算法开发与验证

Leveraging Retrieval-Augmented Large Language Models for Dietary Recommendations With Traditional Chinese Medicine's Medicine Food Homology: Algorithm Development and Validation.

作者信息

Sha Hangyu, Gong Fan, Liu Bo, Liu Runfeng, Wang Haofen, Wu Tianxing

机构信息

School of Computer Science and Engineering, Southeast University, 2 Southeast University Road, Jiangning District, Nanjing, 210096, China, 86 15077889931.

Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China.

出版信息

JMIR Med Inform. 2025 Aug 21;13:e75279. doi: 10.2196/75279.

Abstract

BACKGROUND

Traditional Chinese Medicine (TCM) emphasizes the concept of medicine food homology (MFH), which integrates dietary therapy into health care. However, the practical application of MFH principles relies heavily on expert knowledge and manual interpretation, posing challenges for automating MFH-based dietary recommendations. Although large language models (LLMs) have shown potential in health care decision support, their performance in specialized domains such as TCM is often hindered by hallucinations and a lack of domain knowledge. The integration of uncertain knowledge graphs (UKGs) with LLMs via retrieval-augmented generation (RAG) offers a promising solution to overcome these limitations by enabling a structured and faithful representation of MFH principles while enhancing LLMs' ability to understand the inherent uncertainty and heterogeneity of TCM knowledge. Consequently, it holds potential to improve the reliability and accuracy of MFH-based dietary recommendations generated by LLMs.

OBJECTIVE

This study aimed to introduce Yaoshi-RAG, a framework that leverages UKGs to enhance LLMs' capabilities in generating accurate and personalized MFH-based dietary recommendations.

METHODS

The proposed framework began by constructing a comprehensive MFH knowledge graph (KG) through LLM-driven open information extraction, which extracted structured knowledge from multiple sources. To address the incompleteness and uncertainty within the MFH KG, UKG reasoning was used to measure the confidence of existing triples and to complete missing triples. When processing user queries, query entities were identified and linked to the MFH KG, enabling retrieval of relevant reasoning paths. These reasoning paths were then ranked based on triple confidence scores and entity importance. Finally, the most informative reasoning paths were encoded into prompts using prompt engineering, enabling the LLM to generate personalized dietary recommendations that aligned with both individual health needs and MFH principles. The effectiveness of Yaoshi-RAG was evaluated through both automated metrics and human evaluation.

RESULTS

The constructed MFH KG comprised 24,984 entities, 22 relations, and 29,292 triples. Extensive experiments demonstrate the superiority of Yaoshi-RAG in different evaluation metrics. Integrating the MFH KG significantly improved the performance of LLMs, yielding an average increase of 14.5% in Hits@1 and 8.7% in F1-score, respectively. Among the evaluated LLMs, DeepSeek-R1 achieved the best performance, with 84.2% in Hits@1 and 71.5% in F1-score, respectively. Human evaluation further validated these results, confirming that Yaoshi-RAG consistently outperformed baseline models across all assessed quality dimensions.

CONCLUSIONS

This study shows Yaoshi-RAG, a new framework that enhances LLMs' capabilities in generating MFH-based dietary recommendations through the knowledge retrieved from a UKG. By constructing a comprehensive TCM knowledge representation, our framework effectively extracts and uses MFH principles. Experimental results demonstrate the effectiveness of our framework in synthesizing traditional wisdom with advanced language models, facilitating personalized dietary recommendations that address individual health conditions while providing evidence-based explanations.

摘要

背景

中医强调药食同源的概念,即将食疗融入保健之中。然而,药食同源原则的实际应用严重依赖专家知识和人工解读,这给基于药食同源的饮食建议自动化带来了挑战。尽管大语言模型在医疗保健决策支持方面已显示出潜力,但其在中医等专业领域的表现往往受到幻觉和缺乏领域知识的阻碍。通过检索增强生成(RAG)将不确定知识图谱(UKG)与大语言模型集成,为克服这些限制提供了一个有前景的解决方案,它能够对药食同源原则进行结构化且忠实的表示,同时增强大语言模型理解中医知识内在不确定性和异质性的能力。因此,它有潜力提高大语言模型生成的基于药食同源的饮食建议的可靠性和准确性。

目的

本研究旨在介绍药食同源 - RAG框架,该框架利用不确定知识图谱来增强大语言模型生成准确且个性化的基于药食同源的饮食建议的能力。

方法

所提出的框架首先通过大语言模型驱动的开放信息抽取构建一个全面的药食同源知识图谱(KG),从多个来源提取结构化知识。为了解决药食同源知识图谱中的不完整性和不确定性,使用不确定知识图谱推理来衡量现有三元组的置信度并完成缺失的三元组。在处理用户查询时,识别查询实体并将其与药食同源知识图谱链接,从而检索相关的推理路径。然后根据三元组置信度分数和实体重要性对这些推理路径进行排序。最后,使用提示工程将信息最丰富的推理路径编码为提示,使大语言模型能够生成符合个人健康需求和药食同源原则的个性化饮食建议。通过自动指标和人工评估来评估药食同源 - RAG的有效性。

结果

构建的药食同源知识图谱包含24984个实体、22种关系和29292个三元组。大量实验证明了药食同源 - RAG在不同评估指标上的优越性。整合药食同源知识图谱显著提高了大语言模型的性能,在Hits@1指标上平均提高了14.5%,在F1分数上平均提高了8.7%。在所评估的大语言模型中,DeepSeek - R1表现最佳,Hits@1为84.2%,F1分数为71.5%。人工评估进一步验证了这些结果,确认药食同源 - RAG在所有评估的质量维度上始终优于基线模型。

结论

本研究展示了药食同源 - RAG这一新框架,它通过从不确定知识图谱中检索的知识增强了大语言模型生成基于药食同源的饮食建议的能力。通过构建全面的中医知识表示,我们的框架有效地提取和使用了药食同源原则。实验结果证明了我们的框架在将传统智慧与先进语言模型相结合方面的有效性,促进了针对个体健康状况的个性化饮食建议,同时提供基于证据的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ee/12370266/9236d6f3bad5/medinform-v13-e75279-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验