文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

T cell-mediated tumor killing sensitivity gene signature-based prognostic score for acute myeloid leukemia.

作者信息

Pan Yiyun, Xie FangFang, Zeng Wen, Chen Hailong, Chen Zhengcong, Xu Dechang, Chen Yijian

机构信息

Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.

Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China.

出版信息

Discov Oncol. 2024 Apr 15;15(1):121. doi: 10.1007/s12672-024-00962-w.


DOI:10.1007/s12672-024-00962-w
PMID:38619693
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11018597/
Abstract

BACKGROUND AND OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive, heterogenous hematopoetic malignancies with poor long-term prognosis. T-cell mediated tumor killing plays a key role in tumor immunity. Here, we explored the prognostic performance and functional significance of a T-cell mediated tumor killing sensitivity gene (GSTTK)-based prognostic score (TTKPI). METHODS: Publicly available transcriptomic data for AML were obtained from TCGA and NCBI-GEO. GSTTK were identified from the TISIDB database. Signature GSTTK for AML were identified by differential expression analysis, COX proportional hazards and LASSO regression analysis and a comprehensive TTKPI score was constructed. Prognostic performance of the TTKPI was examined using Kaplan-Meier survival analysis, Receiver operating curves, and nomogram analysis. Association of TTKPI with clinical phenotypes, tumor immune cell infiltration patterns, checkpoint expression patterns were analysed. Drug docking was used to identify important candidate drugs based on the TTKPI-component genes. RESULTS: From 401 differentially expressed GSTTK in AML, 24 genes were identified as signature genes and used to construct the TTKPI score. High-TTKPI risk score predicted worse survival and good prognostic accuracy with AUC values ranging from 75 to 96%. Higher TTKPI scores were associated with older age and cancer stage, which showed improved prognostic performance when combined with TTKPI. High TTKPI was associated with lower naïve CD4 T cell and follicular helper T cell infiltrates and higher M2 macrophages/monocyte infiltration. Distinct patterns of immune checkpoint expression corresponded with TTKPI score groups. Three agents; DB11791 (Capmatinib), DB12886 (GSK-1521498) and DB14773 (Lifirafenib) were identified as candidates for AML. CONCLUSION: A T-cell mediated killing sensitivity gene-based prognostic score TTKPI showed good accuracy in predicting survival in AML. TTKPI corresponded to functional and immunological features of the tumor microenvironment including checkpoint expression patterns and should be investigated for precision medicine approaches.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/4a6bc49f8bee/12672_2024_962_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/72e86808aa8e/12672_2024_962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/4858d96e15a2/12672_2024_962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/afb1f79c5df1/12672_2024_962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/bf4762e0fbfd/12672_2024_962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/c94c24752f44/12672_2024_962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/f313095c5bae/12672_2024_962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/ab03ec49d834/12672_2024_962_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/6a45e4ac2079/12672_2024_962_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/85dc6cd75bcd/12672_2024_962_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/b424e7732cb7/12672_2024_962_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/a8746ffa6a0a/12672_2024_962_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/de4d5d491ea5/12672_2024_962_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/55cd48f0dc39/12672_2024_962_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/87b2094e635f/12672_2024_962_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/4a6bc49f8bee/12672_2024_962_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/72e86808aa8e/12672_2024_962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/4858d96e15a2/12672_2024_962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/afb1f79c5df1/12672_2024_962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/bf4762e0fbfd/12672_2024_962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/c94c24752f44/12672_2024_962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/f313095c5bae/12672_2024_962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/ab03ec49d834/12672_2024_962_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/6a45e4ac2079/12672_2024_962_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/85dc6cd75bcd/12672_2024_962_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/b424e7732cb7/12672_2024_962_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/a8746ffa6a0a/12672_2024_962_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/de4d5d491ea5/12672_2024_962_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/55cd48f0dc39/12672_2024_962_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/87b2094e635f/12672_2024_962_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3a/11018597/4a6bc49f8bee/12672_2024_962_Fig15_HTML.jpg

相似文献

[1]
T cell-mediated tumor killing sensitivity gene signature-based prognostic score for acute myeloid leukemia.

Discov Oncol. 2024-4-15

[2]
A transient receptor potential channel-related model based on machine learning for evaluating tumor microenvironment and immunotherapeutic strategies in acute myeloid leukemia.

Front Immunol. 2022

[3]
Integrative transcriptional characterization of cell cycle checkpoint genes promotes clinical management and precision medicine in bladder carcinoma.

Front Oncol. 2022-8-11

[4]
Identification and validation of a siglec-based and aging-related 9-gene signature for predicting prognosis in acute myeloid leukemia patients.

BMC Bioinformatics. 2022-7-19

[5]
Comprehensive alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer.

Front Immunol. 2022

[6]
Immunotherapy-relevance of a candidate prognostic score for Acute Myeloid Leukemia.

Heliyon. 2024-5-29

[7]
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for acute myeloid leukemia.

Front Oncol. 2022-10-7

[8]
Identification and Validation of a Prognostic Risk-Scoring Model Based on Ferroptosis-Associated Cluster in Acute Myeloid Leukemia.

Front Cell Dev Biol. 2022-1-21

[9]
Prognostic implications of metabolism-related genes in acute myeloid leukemia.

Front Genet. 2024-10-3

[10]
A novel copper-induced cell death-related lncRNA prognostic signature associated with immune infiltration and clinical value in gastric cancer.

J Cancer Res Clin Oncol. 2023-9

引用本文的文献

[1]
Exploring and clinical validation of prognostic significance and therapeutic implications of copper homeostasis-related gene dysregulation in acute myeloid leukemia.

Ann Hematol. 2024-8

本文引用的文献

[1]
Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data.

Clin Res Hepatol Gastroenterol. 2024-4

[2]
Implications of T cell-mediated tumor killing genes for molecular heterogeneity and clinical stratification in lung adenocarcinoma.

Genes Dis. 2023-11-8

[3]
Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1).

Biochim Biophys Acta Gene Regul Mech. 2024-3

[4]
The genes regulating sensitivity of tumor cells to T cell-mediated killing: could they be potential personalized immunotherapeutic targets in head and neck squamous cell carcinoma?

Discov Oncol. 2023-11-5

[5]
Prognostic characteristics of T-cell mediated cell killing-related genes in lung adenocarcinoma.

Autoimmunity. 2023-12

[6]
Escape from T-cell-targeting immunotherapies in acute myeloid leukemia.

Blood. 2024-6-27

[7]
Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment.

Cancers (Basel). 2023-5-11

[8]
T cell-mediated tumor killing patterns in head and neck squamous cell carcinoma identify novel molecular subtypes, with prognosis and therapeutic implications.

PLoS One. 2023

[9]
Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML.

Leukemia. 2023-6

[10]
A review of treatment options employed in relapsed/refractory AML.

Hematology. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索