Suppr超能文献

男性因素的多变量分析及预测体外受精率低的列线图构建。

Multivariate analyses on male factors and construction of a nomogram for predicting low in vitro fertilization rate.

作者信息

Lin Mengyuan, Zhang Yuwei, Wang Honghua, Wang Yan, Wang Yang, Feng Ninghan, He Qingwen

机构信息

Center of Reproductive Medicine, Women's Hospital of Jiangnan University, Wuxi, Jiangsu, China.

Wuxi School of Medicine, Jiangnan University, Wuxi, China.

出版信息

Heliyon. 2024 Apr 6;10(7):e29271. doi: 10.1016/j.heliyon.2024.e29271. eCollection 2024 Apr 15.

Abstract

Low fertilization rate (LFR) and total fertilization failure (TFF) are often encountered in routine in vitro fertilization (IVF) procedure. To solve this problem, multivariate analyses on the relationship between male factors and in vitro fertilization rate were performed, and a nomogram for prediction of LFR was constructed. This retrospective study contained 2011 couples who received IVF treatment from January 2017 to December 2021. Man factors and in vitro fertilization rate were collected. Among these couples, 1347 cases had in vitro fertilization rates ≥30 % (control group), and 664 cases had in vitro fertilization rates <30 % (LFR group). Univariate analyses of male factors found that between the two groups there were significant differences (p < 0.05) in sperm progressive motility (SPR), sperm concentration (SC), total sperm number, normal sperm morphology rate (NSMR), DNA fragmentation index (DFI), sperm acrosin activity (SAA) and the clinical diagnosis of primary or secondary infertility. Multivariate logistic regression analyses showed that SPR, SAA, and SC were independent risk factors for LFR. An algorithm and a correspondent nomogram for predicting high LFR risk were constructed using data from the training cohort. The LFR nomogram exhibited an excellent discrimination power and a high fitting degree in both the training cohort (AUC = 0.90, 95 % CI: 0.88-0.92), (H-L: x = 5.43, p = 0.71) and validation cohort (AUC = 0.89, 95 % CI:0.87-0.92), (H-L: x = 7.85, p = 0.45), respectively. The decision curve analysis (DCA) demonstrated a high efficiency of the LFR nomogram for clinical utility. SPR, SAA, and SC are independent risk factors for LFR. The LFR nomogram established based on these factors could be a useful tool to predict high risk of LFR, and patients with high risk of LFR can be guided to direct ICSI procedure. Clinical application of the LFR nomogram may increase the in vitro fertilization rate by facilitating the decision making in IVF service.

摘要

在常规体外受精(IVF)过程中,低受精率(LFR)和完全受精失败(TFF)经常出现。为了解决这个问题,我们对男性因素与体外受精率之间的关系进行了多因素分析,并构建了一个预测LFR的列线图。这项回顾性研究纳入了2011对在2017年1月至2021年12月期间接受IVF治疗的夫妇。收集了男性因素和体外受精率的数据。在这些夫妇中,1347例的体外受精率≥30%(对照组),664例的体外受精率<30%(LFR组)。对男性因素的单因素分析发现,两组之间在精子前向运动率(SPR)、精子浓度(SC)、总精子数、正常精子形态率(NSMR)、DNA碎片指数(DFI)、精子顶体酶活性(SAA)以及原发性或继发性不孕的临床诊断方面存在显著差异(p<0.05)。多因素逻辑回归分析表明,SPR、SAA和SC是LFR的独立危险因素。利用训练队列的数据构建了一种预测高LFR风险的算法和相应的列线图。LFR列线图在训练队列(AUC = 0.90,95%CI:0.88 - 0.92),(H-L:x = 5.43,p = 0.71)和验证队列(AUC = 0.89,95%CI:0.87 - 0.92),(H-L:x = 7.85,p = 0.45)中均表现出出色的辨别能力和高拟合度。决策曲线分析(DCA)表明LFR列线图在临床应用中具有较高的效率。SPR、SAA和SC是LFR的独立危险因素。基于这些因素建立的LFR列线图可能是预测LFR高风险的有用工具,并且可以指导LFR高风险患者直接进行卵胞浆内单精子注射(ICSI)程序。LFR列线图的临床应用可能通过促进IVF服务中的决策制定来提高体外受精率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a108/11016707/a6839330794e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验