Suppr超能文献

一种摩擦孤子控制着管道中剪切增稠悬浮液的阻力规律。

A frictional soliton controls the resistance law of shear-thickening suspensions in pipes.

作者信息

Bougouin Alexis, Metzger Bloen, Forterre Yoël, Boustingorry Pascal, Lhuissier Henri

机构信息

Aix Marseille Univ, CNRS, Institut Universitaire des Systèmes Thermiques et Industriels, Marseille 13453, France.

Chryso France, Sermaises 45300, France.

出版信息

Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2321581121. doi: 10.1073/pnas.2321581121. Epub 2024 Apr 16.

Abstract

Pipe flows are commonly found in nature and industry as an effective mean of transporting fluids. They are primarily characterized by their resistance law, which relates the mean flow rate to the driving pressure gradient. Since Poiseuille and Hagen, various flow regimes and fluid rheologies have been investigated, but the behavior of shear-thickening suspensions, which jam above a critical shear stress, remains poorly understood despite important applications (e.g., concrete or food processing). In this study, we build on recent advances in the physics of shear-thickening suspensions to address their flow through pipes and establish their resistance law. We find that for discontinuously shear-thickening suspensions (large particule volume fractions), the flow rate saturates at high driving stress. Local pressure and velocity measurements reveal that this saturation stems from the emergence of a frictional soliton: a unique, localized, superdissipative, and backpropagating flow structure coexisting with the laminar frictionless flow phase observed at low driving stress. We characterize the remarkably steep effective rheology of the frictional soliton and show that it sets the resistance law at the whole pipe scale. These findings offer an unusual perspective on low-Reynolds suspension flows through pipes, intriguingly reminiscent of the transition to turbulence for simple fluids. They also provide a predictive law for the transport of such suspensions in pipe systems, with implications for a wide range of applications.

摘要

管道流动在自然界和工业中普遍存在,是输送流体的一种有效方式。它们主要由其阻力定律来表征,该定律将平均流速与驱动压力梯度联系起来。自泊肃叶和哈根以来,人们研究了各种流动状态和流体流变学,但对于剪切增稠悬浮液(在临界剪切应力以上会发生堵塞)的行为,尽管有重要应用(如混凝土或食品加工),但仍了解甚少。在本研究中,我们基于剪切增稠悬浮液物理学的最新进展,来研究它们在管道中的流动并建立其阻力定律。我们发现,对于不连续剪切增稠悬浮液(大颗粒体积分数),流速在高驱动应力下会饱和。局部压力和速度测量表明,这种饱和源于摩擦孤子的出现:一种独特的、局部的、超耗散的且反向传播的流动结构,它与在低驱动应力下观察到的层流无摩擦流动阶段共存。我们表征了摩擦孤子显著陡峭的有效流变学,并表明它在整个管道尺度上设定了阻力定律。这些发现为低雷诺数悬浮液在管道中的流动提供了一个不同寻常的视角,有趣地让人联想到简单流体向湍流的转变。它们还为这种悬浮液在管道系统中的输送提供了一个预测定律,对广泛的应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4272/11046699/ae32eb298ffc/pnas.2321581121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验