Suppr超能文献

活细胞中微管长度调节的最小机制。

Minimal Mechanisms of Microtubule Length Regulation in Living Cells.

机构信息

Department of Mathematics, Duke University, Durham, NC, 27710, USA.

Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, 16801, USA.

出版信息

Bull Math Biol. 2024 Apr 16;86(5):58. doi: 10.1007/s11538-024-01279-z.

Abstract

The microtubule cytoskeleton is responsible for sustained, long-range intracellular transport of mRNAs, proteins, and organelles in neurons. Neuronal microtubules must be stable enough to ensure reliable transport, but they also undergo dynamic instability, as their plus and minus ends continuously switch between growth and shrinking. This process allows for continuous rebuilding of the cytoskeleton and for flexibility in injury settings. Motivated by in vivo experimental data on microtubule behavior in Drosophila neurons, we propose a mathematical model of dendritic microtubule dynamics, with a focus on understanding microtubule length, velocity, and state-duration distributions. We find that limitations on microtubule growth phases are needed for realistic dynamics, but the type of limiting mechanism leads to qualitatively different responses to plausible experimental perturbations. We therefore propose and investigate two minimally-complex length-limiting factors: limitation due to resource (tubulin) constraints and limitation due to catastrophe of large-length microtubules. We combine simulations of a detailed stochastic model with steady-state analysis of a mean-field ordinary differential equations model to map out qualitatively distinct parameter regimes. This provides a basis for predicting changes in microtubule dynamics, tubulin allocation, and the turnover rate of tubulin within microtubules in different experimental environments.

摘要

微管细胞骨架负责在神经元中持续进行长距离的 mRNA、蛋白质和细胞器的胞内运输。神经元微管必须足够稳定以确保可靠的运输,但它们也经历动态不稳定性,因为它们的正负端不断在生长和收缩之间切换。这个过程允许细胞骨架的持续重建,并在损伤环境中具有灵活性。受果蝇神经元中微管行为的体内实验数据的启发,我们提出了一个树突状微管动力学的数学模型,重点是理解微管长度、速度和状态持续时间分布。我们发现,对于现实的动力学,需要限制微管生长相,但限制机制的类型导致对合理的实验扰动产生定性不同的响应。因此,我们提出并研究了两种最简单的长度限制因素:由于资源(微管蛋白)限制导致的限制和由于大长度微管的崩溃导致的限制。我们将详细的随机模型的模拟与平均场常微分方程模型的稳态分析相结合,以描绘出性质上不同的参数区域。这为预测不同实验环境下微管动力学、微管蛋白分配以及微管内微管蛋白的周转率的变化提供了基础。

相似文献

4
Dynamics and length distribution of microtubules under force and confinement.力和限制条件下微管的动力学及长度分布
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041918. doi: 10.1103/PhysRevE.86.041918. Epub 2012 Oct 31.
6

本文引用的文献

2
Mechanisms of microtubule organization in differentiated animal cells.分化动物细胞中微管组织的机制。
Nat Rev Mol Cell Biol. 2022 Aug;23(8):541-558. doi: 10.1038/s41580-022-00473-y. Epub 2022 Apr 5.
5
Microtubule dynamics in healthy and injured neurons.健康和受损神经元中的微管动力学。
Dev Neurobiol. 2021 Apr;81(3):321-332. doi: 10.1002/dneu.22746. Epub 2020 Apr 25.
9
Microtubule control of functional architecture in neurons.微管对神经元功能结构的控制。
Curr Opin Neurobiol. 2019 Aug;57:39-45. doi: 10.1016/j.conb.2019.01.003. Epub 2019 Feb 7.
10
A unified model for microtubule rescue.微管拯救的统一模型。
Mol Biol Cell. 2019 Mar 15;30(6):753-765. doi: 10.1091/mbc.E18-08-0541. Epub 2019 Jan 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验