Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525 AJ, Nijmegen, The Netherlands.
Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525 AJ, Nijmegen, The Netherlands.
FEMS Microbiol Ecol. 2024 Apr 10;100(5). doi: 10.1093/femsec/fiae061.
Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.
水生生态系统是全球甲烷 (CH4) 排放的主要贡献者。富营养化显著增强了 CH4 的产生,因为它刺激了产甲烷作用。目前,旨在减少富营养化的缓解措施(例如添加金属盐来固定磷酸盐 (PO43-))已被广泛采用。然而,这些措施对产甲烷菌和甲烷氧化菌群落的影响——以及对 CH4 循环的影响——在很大程度上仍未得到探索。在这里,我们证明了 Fe(II)Cl2 的添加(用作 PO43- 结合剂)在现场实验和批量培养中对微生物 CH4 循环过程产生了差异影响。在富营养化池塘的围隔中进行的现场实验中,Fe(II)Cl2 的应用通过降低净 CH4 产生量来降低原位 CH4 排放,而沉积物好氧 CH4 氧化速率(在围隔沉积物的批量培养中发现)与对照没有差异。在 Fe(II)Cl2 处理的沉积物中,净 CH4 产生速率的降低可归因于铁依赖性厌氧 CH4 氧化 (Fe-AOM) 的刺激。在批量培养中,CH4 添加后立即开始进行厌氧 CH4 氧化和 Fe(II)的产生,表明 Fe-AOM 可能是由于有利的本土铁循环条件和池塘沉积物中现有的甲烷氧化菌群落而得以实现。16S rRNA 测序数据证实了受测试沉积物中存在厌氧 CH4 氧化古菌以及铁还原菌和铁氧化菌。因此,除了对抗富营养化外,Fe(II)Cl2 的应用还可以通过减少微生物净 CH4 产生和刺激 Fe-AOM 来减轻 CH4 排放。