Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France.
Department of Diagnostic and Therapeutic Interventional Neuroradiology, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1667-1675. doi: 10.1007/s11548-024-03132-z. Epub 2024 Apr 17.
Intracranial aneurysm detection from 3D Time-Of-Flight Magnetic Resonance Angiography images is a problem of increasing clinical importance. Recently, a streak of methods have shown promising performance by using segmentation neural networks. However, these methods may be less relevant in a clinical settings where diagnostic decisions rely on detecting objects rather than their segmentation.
We introduce a 3D single-stage object detection method tailored for small object detection such as aneurysms. Our anchor-free method incorporates fast data annotation, adapted data sampling and generation to address class imbalance problem, and spherical representations for improved detection.
A comprehensive evaluation was conducted, comparing our method with the state-of-the-art SCPM-Net, nnDetection and nnUNet baselines, using two datasets comprising 402 subjects. The evaluation used adapted object detection metrics. Our method exhibited comparable or superior performance, with an average precision of 78.96%, sensitivity of 86.78%, and 0.53 false positives per case.
Our method significantly reduces the detection complexity compared to existing methods and highlights the advantages of object detection over segmentation-based approaches for aneurysm detection. It also holds potential for application to other small object detection problems.
从 3D 时间飞跃磁共振血管造影图像中检测颅内动脉瘤是一个具有日益重要临床意义的问题。最近,一系列方法已经通过使用分割神经网络显示出了有希望的性能。然而,在临床环境中,这些方法的相关性可能较低,因为诊断决策依赖于检测对象而不是其分割。
我们引入了一种针对小目标检测(如动脉瘤)的 3D 单阶段目标检测方法。我们的无锚点方法结合了快速的数据标注、适应的数据采样和生成技术,以解决类别不平衡问题,并采用球形表示来提高检测性能。
我们使用两个包含 402 个病例的数据集,对我们的方法与最先进的 SCPM-Net、nnDetection 和 nnUNet 基线进行了全面评估,使用了经过适配的目标检测指标。我们的方法表现出了相当或更优的性能,平均精度为 78.96%,敏感度为 86.78%,每个病例的假阳性率为 0.53。
与现有方法相比,我们的方法大大降低了检测的复杂性,并强调了目标检测相对于基于分割的方法在动脉瘤检测中的优势。它还有望应用于其他小目标检测问题。