Suppr超能文献

基于磁共振 T1 图像的颅内动脉瘤自动分割与检测的深度学习框架。

A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images.

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China.

出版信息

Eur Radiol. 2024 May;34(5):2838-2848. doi: 10.1007/s00330-023-10295-x. Epub 2023 Oct 16.

Abstract

OBJECTIVES

To design a deep learning-based framework for automatic segmentation and detection of intracranial aneurysms (IAs) on magnetic resonance T1 images and test the robustness and performance of framework.

METHODS

A retrospective diagnostic study was conducted based on 159 IAs from 136 patients who underwent the T1 images. Among them, 127 cases were randomly selected for training and validation, and 32 cases were used to assess the accuracy and consistency of our algorithm. We developed and assembled three convolutional neural networks for the segmentation and detection of IAs. The segmentation and detection performance of the model were compared with the ground truth, and various metrics were calculated at the voxel level, IAs level, and patient level to show the performance of our framework.

RESULTS

Our assembled model achieved overall Dice, voxel-level sensitivity, specificity, balanced accuracy, and F1 score of 0.802, 0.874, 0.9998, 0.937, and 0.802, respectively. A coincidence greater than 0.7 between the aneurysms predicted by the model and the ground truth was considered as a true positive. For IAs detection, the sensitivity reached 90.63% with 0.58 false positives per case. The volume of IAs segmented by our model showed a high agreement and consistency with the volume of IAs labeled by experts.

CONCLUSION

The deep learning framework is achievable and robust for IAs segmentation and detection. Our model offers more clinical application opportunities compared to digital subtraction angiography (DSA)-based, CTA-based, and MRA-based methods.

CLINICAL RELEVANCE STATEMENT

Our deep learning framework effectively detects and segments intracranial aneurysms using clinical routine T1 sequences, showing remarkable effectiveness and offering great potential for improving the detection of latent intracranial aneurysms and enabling early identification.

KEY POINTS

•There is no segmentation method based on clinical routine T1 images. Our study shows that the proper deep learning framework can effectively localize the intracranial aneurysms. •The T1-based segmentation and detection method is more universal than other angiography-based detection methods, which can potentially reduce missed diagnoses caused by the absence of angiography images. •The deep learning framework is robust and has the potential to be applied in a clinical setting.

摘要

目的

设计一种基于深度学习的磁共振 T1 图像颅内动脉瘤(IA)自动分割和检测框架,并测试其鲁棒性和性能。

方法

基于 136 例接受 T1 图像检查的患者的 159 个 IA 进行回顾性诊断研究。其中,127 例随机选择用于训练和验证,32 例用于评估我们算法的准确性和一致性。我们开发并组装了三个用于 IA 分割和检测的卷积神经网络。将模型的分割和检测性能与真实情况进行比较,并在体素水平、IA 水平和患者水平上计算各种指标,以显示我们框架的性能。

结果

我们组装的模型在整体 Dice、体素级灵敏度、特异性、平衡准确性和 F1 评分方面分别达到 0.802、0.874、0.9998、0.937 和 0.802。将模型预测的动脉瘤与真实情况的吻合度大于 0.7 认为是真阳性。对于 IA 检测,灵敏度达到 90.63%,每个病例有 0.58 个假阳性。我们的模型分割的 IA 体积与专家标记的 IA 体积具有高度一致性。

结论

深度学习框架可实现并稳健地用于 IA 分割和检测。与基于数字减影血管造影(DSA)、CTA 和 MRA 的方法相比,我们的模型提供了更多的临床应用机会。

临床相关性声明

我们的深度学习框架使用临床常规 T1 序列有效检测和分割颅内动脉瘤,显示出显著的效果,并为提高潜在颅内动脉瘤的检测能力和实现早期识别提供了巨大潜力。

重点

  1. 目前尚无基于临床常规 T1 图像的分割方法。我们的研究表明,适当的深度学习框架可以有效地定位颅内动脉瘤。

  2. 基于 T1 的分割和检测方法比其他基于血管造影的检测方法更通用,这可能减少因缺乏血管造影图像而导致的漏诊。

  3. 深度学习框架具有鲁棒性,有潜力应用于临床环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验