Piotrowski Piotr, Buza Marta, Nowaczyński Rafał, Kongsuwan Nuttawut, Surma Hańcza B, Osewski Paweł, Gajc Marcin, Strzep Adam, Ryba-Romanowski Witold, Hess Ortwin, Pawlak Dorota A
Centre of Excellence ENSEMBLE3 sp. z o.o, Wolczynska 133, Warsaw, Poland.
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland.
Nat Commun. 2024 Apr 17;15(1):3309. doi: 10.1038/s41467-024-47539-3.
Interactions between plasmons and exciton nanoemitters in plexcitonic systems lead to fast and intense luminescence, desirable in optoelectonic devices, ultrafast optical switches and quantum information science. While luminescence enhancement through exciton-plasmon coupling has thus far been mostly demonstrated in micro- and nanoscale structures, analogous demonstrations in bulk materials have been largely neglected. Here we present a bulk nanocomposite glass doped with cadmium telluride quantum dots (CdTe QDs) and silver nanoparticles, nAg, which act as exciton and plasmon sources, respectively. This glass exhibits ultranarrow, FWHM = 13 nm, and ultrafast, 90 ps, amplified photoluminescence (PL), λ≅503 nm, at room temperature under continuous-wave excitation, λ = 405 nm. Numerical simulations confirm that the observed improvement in emission is a result of a multiscale light enhancement owing to the ensemble of QD-populated plasmonic nanocavities in the material. Power-dependent measurements indicate that >100 mW coherent light amplification occurs. These types of bulk plasmon-exciton composites could be designed comprising a plethora of components/functionalities, including emitters (QDs, rare earth and transition metal ions) and nanoplasmonic elements (Ag/Au/TCO, spherical/anisotropic/miscellaneous), to achieve targeted applications.
在激子 - 等离激元复合系统中,等离激元和激子纳米发射器之间的相互作用会产生快速且强烈的发光现象,这在光电器件、超快光开关和量子信息科学领域具有重要应用价值。虽然迄今为止,通过激子 - 等离激元耦合实现的发光增强大多在微米和纳米尺度结构中得到了证实,但在块状材料中的类似证明却在很大程度上被忽视了。在此,我们展示了一种掺杂碲化镉量子点(CdTe QDs)和银纳米颗粒(nAg)的块状纳米复合玻璃,其中碲化镉量子点和银纳米颗粒分别作为激子源和等离激元源。这种玻璃在连续波激发(波长λ = 405 nm)下,室温时呈现出半高宽(FWHM)= 13 nm的超窄且90 ps的超快放大光致发光(PL),发光波长λ≅503 nm。数值模拟证实,观察到的发射增强是由于材料中填充量子点的等离激元纳米腔的集合导致的多尺度光增强的结果。功率相关测量表明发生了大于100 mW的相干光放大。这类块状等离激元 - 激子复合材料可以设计成包含大量的组分/功能,包括发射器(量子点、稀土和过渡金属离子)和纳米等离激元元素(Ag/Au/TCO、球形/各向异性/其他),以实现特定的应用目标。