Suppr超能文献

光子晶体中的激光受激辐射放大

Lasing Spaser in Photonic Crystals.

作者信息

Parkhomenko Roman G, Kuchyanov Alexander S, Knez Mato, Stockman Mark I

机构信息

CIC NanoGUNE, Tolosa Hiribidea 76, E-20018 San Sebastian, Spain.

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Koptyug Avenue 1, 630090 Novosibirsk, Russia.

出版信息

ACS Omega. 2021 Feb 3;6(6):4417-4422. doi: 10.1021/acsomega.0c05813. eCollection 2021 Feb 16.

Abstract

Plasmonic nanolasers (spasers) are of intense interest, attributable to their ability to generate a high-intensity coherent radiation. We infiltrated a three-dimensional silica-based photonic crystal (PhC) film with spasers, composed of spherical gold cores, surrounded by silica shells with dye molecules. In spasers, the gold nanospheres supported the surface plasmons and the dye molecules transferred incoming optical energy to the surface plasmons. Our experiments show that such a structure, consisting of a PhC, which acts as an external distributed feedback resonator, and spasers, can serve as a coherent source of electromagnetic radiation. Spasers were locked in phase by the common radiation causing a phenomenon called the lasing spaser: the emission of spatially and temporarily coherent light normal to the surface of the PhC film. The far-field radiation patterns appeared in the shape of the Star-of-David, which is due to the dispersion along the Brillouin zone boundary. The infiltration of the spasers into the PhC led to drastic narrowing of the emission peak and an 80-fold decrease in the spaser generation threshold with respect to the same spasers in a suspension at room temperature.

摘要

等离子体纳米激光器(表面等离激元激射器)备受关注,这归因于它们产生高强度相干辐射的能力。我们将由球形金核组成、周围包裹着带有染料分子的二氧化硅壳层的表面等离激元激射器渗透到三维二氧化硅基光子晶体(PhC)薄膜中。在表面等离激元激射器中,金纳米球支持表面等离子体,而染料分子将入射光能转移到表面等离子体上。我们的实验表明,这种由充当外部分布式反馈谐振器的光子晶体和表面等离激元激射器组成的结构,可以作为电磁辐射的相干源。表面等离激元激射器通过共同辐射被锁定相位,从而导致一种称为激射表面等离激元激射器的现象:垂直于光子晶体薄膜表面发射空间和时间上相干的光。远场辐射图案呈大卫之星形状,这是由于沿布里渊区边界的色散所致。与室温下悬浮液中的相同表面等离激元激射器相比,将表面等离激元激射器渗透到光子晶体中导致发射峰急剧变窄,且表面等离激元激射器产生阈值降低了80倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9fa/7893802/5758f01da06d/ao0c05813_0002.jpg

相似文献

1
Lasing Spaser in Photonic Crystals.
ACS Omega. 2021 Feb 3;6(6):4417-4422. doi: 10.1021/acsomega.0c05813. eCollection 2021 Feb 16.
2
Ten years of spasers and plasmonic nanolasers.
Light Sci Appl. 2020 May 25;9:90. doi: 10.1038/s41377-020-0319-7. eCollection 2020.
3
Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
ACS Nano. 2018 Apr 24;12(4):3865-3874. doi: 10.1021/acsnano.8b01206. Epub 2018 Apr 16.
4
A low lasing threshold and widely tunable spaser based on two dark surface plasmons.
Sci Rep. 2017 Oct 19;7(1):13590. doi: 10.1038/s41598-017-12463-8.
5
Imaging the dark emission of spasers.
Sci Adv. 2017 Apr 14;3(4):e1601962. doi: 10.1126/sciadv.1601962. eCollection 2017 Apr.
6
Demonstration of a spaser-based nanolaser.
Nature. 2009 Aug 27;460(7259):1110-2. doi: 10.1038/nature08318. Epub 2009 Aug 16.
7
Spaser operation below threshold: autonomous vs. driven spasers.
Opt Express. 2015 Aug 24;23(17):21983-93. doi: 10.1364/OE.23.021983.
8
Power Balance and Temperature in Optically Pumped Spasers and Nanolasers.
ACS Photonics. 2018 Sep 19;5(9):3695-3703. doi: 10.1021/acsphotonics.8b00705. Epub 2018 Aug 24.
9
Wavelength-tunable spasing in the visible.
Nano Lett. 2013 Sep 11;13(9):4106-12. doi: 10.1021/nl4015827. Epub 2013 Aug 9.
10
Open Resonator Electric Spaser.
ACS Nano. 2017 Dec 26;11(12):12573-12582. doi: 10.1021/acsnano.7b06735. Epub 2017 Nov 2.

引用本文的文献

1
Ultrafast photoluminescence and multiscale light amplification in nanoplasmonic cavity glass.
Nat Commun. 2024 Apr 17;15(1):3309. doi: 10.1038/s41467-024-47539-3.
2
Facile Fabrication of Gold Nanorods@Polystyrenesulfonate Yolk-Shell Nanoparticles for Spaser Applications.
ACS Appl Nano Mater. 2022 Apr 22;5(4):4629-4633. doi: 10.1021/acsanm.2c00967. Epub 2022 Apr 12.

本文引用的文献

2
Spaser Nanoparticles for Ultranarrow Bandwidth STED Super-Resolution Imaging.
Adv Mater. 2020 Aug;32(32):e2004410. doi: 10.1002/adma.202004410.
3
Lasing at K Points of a Honeycomb Plasmonic Lattice.
Phys Rev Lett. 2019 Jan 11;122(1):013901. doi: 10.1103/PhysRevLett.122.013901.
4
Lasing in Ni Nanodisk Arrays.
ACS Nano. 2019 May 28;13(5):5686-5692. doi: 10.1021/acsnano.9b01006. Epub 2019 Apr 15.
5
Three-level spaser for next-generation luminescent nanoprobe.
Sci Adv. 2018 Aug 17;4(8):eaat0292. doi: 10.1126/sciadv.aat0292. eCollection 2018 Aug.
6
Spaser as a biological probe.
Nat Commun. 2017 Jun 8;8:15528. doi: 10.1038/ncomms15528.
7
Surface plasmon lasing observed in metal hole arrays.
Phys Rev Lett. 2013 May 17;110(20):206802. doi: 10.1103/PhysRevLett.110.206802. Epub 2013 May 13.
8
Explosives detection in a lasing plasmon nanocavity.
Nat Nanotechnol. 2014 Aug;9(8):600-4. doi: 10.1038/nnano.2014.135. Epub 2014 Jul 20.
9
Wavelength-tunable spasing in the visible.
Nano Lett. 2013 Sep 11;13(9):4106-12. doi: 10.1021/nl4015827. Epub 2013 Aug 9.
10
Steady state superradiance of a 2D-spaser array.
Opt Express. 2013 Jun 17;21(12):14539-47. doi: 10.1364/OE.21.014539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验