Suppr超能文献

事件相关电位源的二阶盲辨识。

Second Order Blind Identification of Event Related Potentials Sources.

机构信息

N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia.

出版信息

Brain Topogr. 2023 Nov;36(6):797-815. doi: 10.1007/s10548-023-00998-1. Epub 2023 Aug 25.

Abstract

Event-related potentials (ERPs) recorded on the surface of the head are a mixture of signals from many sources in the brain due to volume conductions. As a result, the spatial resolution of the ERPs is quite low. Blind source separation can help to recover source signals from multichannel ERP records. In this study, we present a novel implementation of a method for decomposing multi-channel ERP into components, which is based on the modeling of second-order statistics of ERPs. We also report a new implementation of Bayesian Information Criteria (BIC), which is used to select the optimal number of hidden signals (components) in the original ERPs. We tested these methods using both synthetic datasets and real ERPs data arrays. Testing has shown that the ERP decomposition method can reconstruct the source signals from their mixture with acceptable accuracy even when these signals overlap significantly in time and the presence of noise. The use of BIC allows us to determine the correct number of source signals at the signal-to-noise ratio commonly observed in ERP studies. The proposed approach was compared with conventionally used methods for the analysis of ERPs. It turned out that the use of this new method makes it possible to observe such phenomena that are hidden by other signals in the original ERPs. The proposed method for decomposing a multichannel ERP into components can be useful for studying cognitive processes in laboratory settings, as well as in clinical studies.

摘要

脑电信号是头皮表面记录到的事件相关电位(ERP),由于容积传导,它是大脑中许多来源信号的混合。因此,ERP 的空间分辨率相当低。盲源分离有助于从多通道 ERP 记录中恢复源信号。在这项研究中,我们提出了一种新的方法,用于将多通道 ERP 分解为组件,该方法基于 ERP 的二阶统计建模。我们还报告了贝叶斯信息准则(BIC)的新实现,该准则用于选择原始 ERP 中隐藏信号(组件)的最佳数量。我们使用合成数据集和真实 ERP 数据阵列测试了这些方法。测试表明,即使在时间上这些信号严重重叠且存在噪声的情况下,ERP 分解方法也可以以可接受的精度从其混合物中重建源信号。BIC 的使用允许我们在 ERP 研究中常见的信噪比下确定正确的源信号数量。所提出的方法与传统的 ERP 分析方法进行了比较。结果表明,使用这种新方法可以观察到在原始 ERP 中被其他信号掩盖的现象。将多通道 ERP 分解为组件的方法可用于实验室环境中的认知过程研究,以及临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验